

California Air Resources Board

Air Resources Board IFB No. 13-414: Enhanced Inspection & Maintenance for GHG & VOCs at Upstream Facilities –(Revised)

Prepared by: Sage ATC Environmental Consulting LLC

NOVEMBER 2019

Disclaimer

The statements and conclusions in this report are those of the contractor and not necessarily
those of the California Air Resources Board. The mention of commercial products, their source,
or their use in connection with material reported herein is not to be construed as actual or implied
endorsement of such products.

Acknowledgment

California Air Resources Board
Feather River Air Quality Management District
Glenn County Air Pollution Control District
South Coast Air Quality Management District
Ventura County Air Pollution Control District
San Joaquin Valley Air Pollution Control District
Oilfield Environmental & Compliance, Inc.

This report was submitted in fulfillment of ARB Contract Number 13-414: Enhanced Inspection & Maintenance for GHG & VOCs at Upstream Facilities by Sage Environmental Consulting LP (Sage) under the sponsorship of the California Air Resources Board (ARB).

TABLE OF CONTENTS

SECTI	ION	1 Executive Summary	1-1
1	.1	Introduction	1-1
1	.2	Emission Correlation Equation Results	1-1
1		Instrument Evaluations	
1	.4	Emissions from Pneumatic Controllers	1-3
1	.5	Project Quality Control	1-4
		2 The Development of Fugitive Emission Correlations for Natural Gas	2.1
	2.1	Sampling Methodology	
		Direct Emission Calculations, Using Hi Flow Sampler Data	
	2.3 2.4	Development of Emissions Correlations by Component Type	
	2.4 2.5	1	
	_	Study Limitations	
SECT	ION	3 Instrument Evaluations	3-1
3	3.1	Introduction	3-1
3	3.2	TVA 1000B	3-1
3	3.3	RKI Eagle	3-2
3	3.4	RMLD	3-3
3	3.5	COSMOS XP-3160	3-3
3	3.6	FLIR GF-320 Infrared Camera	3-4
3	3.7	The Picarro Surveyor	3-6
3	3.8	Instrument Evaluation Results	3-6
		3.8.1 Methodology	3-6
		3.8.2 Evaluation #1: Key Performance Indicators (TVA, RMLD, Eagle,	
		COSMOS, IR Camera, Picarro Surveyor)	3-7
		3.8.3 Evaluation #2: Method 21 Monitoring (TVA, Eagle, COSMOS)	3-8
		3.8.4 Evaluation #3: Comparative Monitoring (RMLD, IR Camera)	3-11
		3.8.5 Evaluation #4: Comparative Monitoring (IR Camera and the Picarro	
		Surveyor)	3-12
3	3.9	Conclusions	3-17
SECTI	ION	4 Emissions from Pneumatic Devices	4-1
4	1.1	Introduction	4-1
4	1.2	Results	4-2

4.3	Emission Calculations	4-4
SECTION	N 5 Project Quality Control	5-1
5.1	Hi Flow Sampler Calibration and Calibration Verifications	5-1
5.2	TVA Analyzer Calibration Verifications	5-2
5.3	Eagle and COSMOS Calibration Verifications	5-4
5.4	RMLD Calibration Verification	5-5
5.5	Test Data Documentation Review	5-5
5.6	Sample Documentation	5-5
5.7	TO-15 Analysis Quality Control	5-7
5.8	ASTM 1945/3588 Analysis Quality Control	5-9

LIST OF TABLES

Table 1-1	Completed Sample Test Matrix	1-1
Table 1-2	Correlation Equations for Components in Natural Gas Service	1-2
Table 2-1	Hi Flow Sampler Technical Specifications	2-4
Table 2-2	Project Sample Design for Development of Natural Gas Production	ı
	Facility-Specific Correlation Equations	2-9
Table 2-3-	Frequently Occurring Compounds	2-10
Table 2-4	Completed Test Matrix	2-12
Table 2-5	2015 CARB Study Gas Service Correlation Model Parameters	2-12
Table 2-6	Derived 2015 CARB Study Equations	2-14
Table 3-1	TVA-1000B Toxic Vapor Analyzer Specifications	3-2
Table 3-2	RKI Eagle Model 1Specifications	3-2
Table 3-3	RMLD Analyzer Specifications	3-3
Table 3-4	COSMOS XP-3160 Analyzer Specifications	3-4
Table 3-5	FLIR GF320 IR Camera Specifications	3-4
Table 3-6	GF-320 IR Camera Minimum Detected Leak Rate	3-5
Table 3-7	Picarro Surveyor Specifications	3-6
Table 3-8	Analyzer KPIs	3-7
Table 3-9	Comparative Monitoring Results for Method 21 Compatible Instrur	nents 3-9
Table 3-10	Comparative Monitoring Results: RMLD & IR Camera	3-11
Table 3-11	PICARRO Surveyor & IR Camera	3-12
Table 3-12	Site #1 Emissions by Area	3-13
Table 3-13	Site #2 Emissions by Area	3-14
Table 3-14	Site #3 Emissions by Area	3-15
Table 3-15	Site #4 Emissions by Area	3-16
Table 4-1	Mass Emissions Summary for Gas Field Pneumatic Devices	4-2
Table 5-1	Hi Flow Sampler Daily Calibration Verification Results	5-2
Table 5-2	TVA Calibration Verifications	5-3
Table 5-3	Calibration Verification of the RKI Eagle Model 1	5-4
Table 5-4	Calibration Verification of the COSMOS XP-3160	
Table 5-5	QC Results for TO-15 Analyses	5-8

LIST OF FIGURES

Figure 2-1	Testing Locations	2-1
Figure 2-2	Performing Method 21	2-3
Figure 2-3	IR Camera Imaging	2-3
Figure 2-4	Emission Testing with the Hi Flow Sampler	2-5
Figure 2-5	Using the TVA to Measure Sample Concentrations < 1%	2-6
Figure 2-6	Sample Collection with the Vac-U-Tube Sampler	2-6
Figure 2-7	Correlation Plot for Valves in Gas Service	2-15
Figure 2-8	Correlation Plot for Connectors in Gas Service	2-16
Figure 2-9	Correlation Plot for Flanges in Gas Service	2-17
Figure 2-10	Correlation Plot for Connectors & Flanges in Gas Service	2-18
Figure 2-11	Correlation Plot for OELs in Gas Service	2-19
Figure 2-12	Correlation Plot for "Other" Components in Gas Service	2-20
Figure 3-1	Comparative Monitoring Results: RMLD & IR Camera	3-11
Figure 3-2	Site #1: Picarro Surveyor & IR Camera Results	3-13
Figure 3-3	Site #2: Picarro Surveyor & IR Camera Results	3-14
Figure 3-4	Site #3: Picarro Surveyor & IR Camera Results	3-15
Figure 3-5	Site #4: Picarro Surveyor & IR Camera Results	3-16
Figure 4-1	Invalco Flex Tube® CT Series Pneumatic Flow Controller	4-1
Figure 4-2	Kimray® Pneumatic Flow Controller	4-2
Figure 4-3	Emissions Rates per Pneumatic Device Type	4-3
Figure 5-1	Sample Logbook	5-6
Figure 5-2	Completed Project Sample Chain-of-Custody Form	5-7

APPENDICES:

- Appendix A: Field and Lab Data Calculations
- Appendix B: Correlation Plots of Mass Emission Rates vs. Leaking Equipment Concentrations
- Appendix C: An Example Calculation of Mean Square Error Used to Calculate the Scale Bias Correction Factor for Flanges in Gas Service
- Appendix D: Notes to this Updated Report 08/20/2019
- Appendix E: Average Emission Rates for Components in Liquid Service
- Appendix F: Pneumatic Device Test Results
- Appendix G: Project Sample Log Book
- Appendix H: Analytical Results

LIST OF ACRONYMS

% REC Percent Recovery

ASTM American Society for Testing and Materials

C Degrees Centigrade

C₂H₆ Ethane CAN Canister

CAPCOA California Air Pollution Control Officers Association

CARB California Air Resources Board
CCV Continuing Calibration Verification

CF Conversion factor
CFM Cubic Feet per Minute

CH₄ Methane

CO Carbon Monoxide
CO₂ Carbon Dioxide
COC Chain-of-Custody

CRDS Cavity Ring-Down Spectroscopy
DB9 A 9- Pin Serial Port Connector

DOR Delay of Repair

EPA Environmental Protection Agency

ER Emission Rate

FID Flame Ionization Detector ft³/min Cubic Feet per Minute GC Gas Chromatograph GHG Greenhouse Gas H₂S Hydrogen Sulfide ID Identification in Hg Inches of Mercury

IR Infared K Kelvin

K One Thousand KKK Triple K

KPI Key Performance Indicator

lb Pound

LCD Laboratory Control Duplicate

LCD Liquid Crystal Display LCS Laboratory Control Spike

LCSD Laboratory Control Spike Duplicate

LDAR Leak Detection & Repair
LEL Lower Explosive Limit

Li-Ion Lithium Ion

LPM Liters per Minute

 mg/m^3 Milligrams per Cubic Meter

MSE Mean Square Error MWMolecular Weight

 N_2 Nitrogen

NiCad Nickel Cadmium Nickel Metal Hydride NiMH

NSPS New Source Performance Standard

 O_2 Oxygen

OEC Oilfield Environmental and Compliance

OEL Open-Ended Line

0000 Quad O

PFCs Pneumatic Flow Controllers

Parts per Billion ppb

Parts per Million – Meter ppm-m Parts per Million by Volume ppmv

PRD Pressure Relief Device PRV Pressure Relief Valve

QC **Quality Control**

RMLD Remote Methane Leak Detector **RPD** Relative Percent Difference Scale Bias Correction Factor **SBCF** Standard Cubic Feet per Day SCFD **SCFH** Standard Cubic Feet per Hour **SCFM** Standard Cubic Feet per Minute

SV Screening Value TB Tedlar Bag

TDLAS Tunable Diode Laser Absorption Spectroscopy

TOC **Total Organic Compounds**

Tons/Year tpy

Toxic Vapor Analyzer TVA

VOC Volatile Organic Compounds

1.1 Introduction

Sage Environmental Consulting LP (Sage) has conducted a field study of fugitive methane and hydrocarbon emissions from California natural gas production facilities (gas wells and natural gas processing plants). Testing was conducted in three phases:

- Phase I: testing at sites in southern California from January 20 to January 30, 2015;
- Phase II: testing at sites in central California from February 23 to March 3, 2015; and
- Phase III: testing at sites in northern California from August 6 to August 14, 2015.

Over the course of this study, data was collected from one hundred and sixty (160) components at thirty-nine (39) sites for use in the development of correlation equations for leaking equipment in natural gas service following a modified U.S. Environmental Protection Agency (EPA) unitspecific correlation method. Thirty-five (35) samples for laboratory analyses and emissions speciation were also collected from a subset of selected components. Initially the test matrix included components in both gas and liquid phases. At the start of Phase II, however, the focus was restricted to gas phase components only. Emission results for the limited set of liquid service components tested are provided in Appendix E. A map of the test site locations is provided in Section 2.0, Figure 2-1. This study also included an evaluation of six (6) different equipment leak detection technologies and a limited testing of emissions from gas field pneumatic devices.

1.2 **Emission Correlation Equation Results**

Table 1-1 identifies the completed sample test matrix used to develop the natural gas emission correlations. Emissions from leaking components were measured with a Bacharach Hi Flow Sampler® and reported as methane.

Table 1-1 **Completed Sample Test Matrix**

Type		EPA Method 21 Reading, ppmv CH ₄							
Gas Service	0 - < 100	>= 100K	Sum						
Valves	7	7	6	7	6	33			
Connectors	6	8	9	6	8	37			
Flanges	7	6	6	1	2	22			
Connectors + Flanges	13	14	15	7	10				
OELs	9	6	4	7	8	34			
Other	6	6	6	8	8	34			
TOTAL	48	47	46	36	42	160			

Table 1-2 provides the resulting correlation equations developed from the measurement data collected in this project. By inputting a Method 21 screening value (SV), the equation calculates the Leak Rate in kilograms/hour (kg/hr) as methane at standard conditions of 25°C and 1 atmosphere.

Table 1-2 Correlation Equations for Components in Natural Gas Service

Component Type	2015 CARB Study Correlation Equations
(Gas Service Only)	Correlation ^{1,2,3}
Valves	Leak Rate (kg/hr) = $1.3236E-05 \times SV^{0.81180}$
Connectors	Leak Rate (kg/hr) = 1.5523 E-05 x SV $^{0.6848}$
Flanges	Leak Rate (kg/hr) = $3.6815E-03 \times SV^{0.3369}$
Connectors & Flanges	Leak Rate (kg/hr) = $4.1772E-04 \times SV^{0.4666}$
OELs	Leak Rate (kg/hr) = $8.1490E-05 \times SV^{0.7157}$
Other	Leak Rate (kg/hr) = $2.2542E-05 \times SV^{0.7902}$

¹ SV = Screening value in ppmv

Thirty-five (35) sample pairs were collected for EPA Method TO-15 and the American Society for Testing and Materials (ASTM) 1945/3588 analyses from the components tested. The top eleven (11) compounds detected in these samples (excluding oxygen, nitrogen, carbon dioxide and Total Petroleum Hydrocarbons) were, in order of decreasing mass emission rate (kg/hr):

- 1. Methane
- 2. Hexane
- 3. Cyclohexane
- 4. Heptane
- 5. Benzene
- 6. Toluene
- 7. Xylenes (total)
- 8. Isopropyl Alcohol
- 9. Ethylbenzene
- 10. Ethanol
- 11. Acetone

Average methane emission rates were several orders of magnitude above all other compounds.

² These correlations predict methane-equivalent Total Organic Compound (TOC) emission rates. ER, kg/hr = SBCF x $10^{\beta0}$ x SV $^{\beta1}$

³ Note that the EPA Protocol often presents the equation noted in item 3 above, as follows: Leak Rate, kg/hr, as methane = C1 x (Monitored Leak Concentration, ppmv as methane) β_1 , Where C1 = SBCF x $10^{\beta 0}$.

<u>Section 2.0</u> of this report provides descriptions of the testing methodology and the development of the equations that correlate natural gas mass emissions with the EPA Method 21 concentration readings obtained in this study. Supporting documentation is provided in the Appendices.

1.3 **Instrument Evaluations**

The Thermo Scientific Toxic Vapor Analyzer (TVA) 1000B was used to obtain EPA Method 21 screening results for use in the correlation equations development. In addition to the TVA, five (5) other instruments/technologies were evaluated for their ability to detect fugitive emissions from natural gas:

- The RKI Eagle Model 1 equipped with a catalytic oxidation sensor;
- The COSMOS XP-3160 equipped with a catalytic oxidation sensor;
- The Bacharach Remote Methane Leak Detector (RMLD);
- The FLIR GF-320 Infrared Camera: and
- The Picarro Surveyor.

A side-by-side comparison of the TVA, RKI Eagle 1 and the COSMOS XP-3160 analyzers indicated comparable results over the range of typical regulatory leak definitions. A comparison between the RMLD and the IR Camera showed that both remote sensing instruments were proficient in identifying significant leaks with the IR Camera having the advantage of being able to more precisely identify the leaking component. A brief test of the Picarro Surveyor pointed out both the advantages and the limitations of this new and promising leak detection technology.

Section 3.0 of this report discusses the results of the instrument evaluations.

1.4 **Emissions from Pneumatic Controllers**

During the third phase of field tests, attention was briefly given to characterizing fugitive emissions from two types of pneumatic controllers in common use at natural gas well sites in California: (1) the Invalco Flex Tube® CT Series Pneumatic Flow Controller and (2) the Kimray® Pneumatic Flow Controller. The Invalco series typifies a high bleed pneumatic device while the Kimray controller is, in comparison, a low bleed pneumatic device. Emissions testing of ten (10) Invalco's and six (6) Kimray's was conducted with the Hi Flow Sampler. Average methane-equivalent emissions from the Invalco pneumatic controller were 0.2 kg/hour or 11 standard cubic feet per hour (SCFH). Average methane-equivalent emissions from the Kimray's were approximately an order of magnitude lower at 0.03 kg/hour or 1.6 SCFH. Even though a small number of pneumatic controllers were tested and further testing is needed, these emission results are similar to those used in ARB's 2007 Oil and Gas Industry Survey (ARB, 2013. 2007 Oil and Gas Industry Survey Results, Final Report (Revised October 2013). The ARB Survey Report used 22 SCFH for high bleed pneumatics, and 4.8 SCFH for low bleed pneumatics. In addition, both the ARB Survey Report low bleed pneumatics and the Kimray's in this study fall below the US EPA's OOOO New Source Performance standard of 6 SCFH for low bleed pneumatics.

Section 4.0 of this report discusses the results of the pneumatic controller emissions test.

1.5 **Project Quality Control**

The quality of the data produced throughout this project was assured by daily equipment calibration verification checks, the following of documentation protocols, sample chain-ofcustody proceedings, and analytical quality control checks. The results of these checks and procedures indicate that instrumentation, both field and analytical, were maintained in a state of control through the project's duration and that the resulting data is of a known and verifiable accuracy.

<u>Section 5.0</u> of this report includes the results of the project's quality control checks.

There are eight (8) appendices to this report: Appendices

- Appendix A provides the raw data and calculations;
- Appendix B provides graphs of the correlations between mass emission rates and leak concentrations for the component types tested;
- Appendix C provides an example calculation of the Bias Correction Factor for flanges in gas service;
- Appendix D provides explanatory notes;
- Appendix E reports average emission rates for the components in liquid service that were tested;
- Appendix F provides the results for the pneumatic device tests;
- Appendix G reproduces the project sample log book; and
- Appendix H provides the analytical results from the project's laboratory.

SECTION 2

THE DEVELOPMENT OF FUGITIVE EMISSION CORRELATIONS FOR NATURAL GAS PRODUCTION **FACILITIES IN CALIFORNIA**

A field study was conducted at thirty-nine (39) gas production facilities in California, located as shown in Figure 2-1.

Figure 2-1 **Testing Locations**

The purpose of the field study was to measure mass emissions of total hydrocarbons reported as methane from leaking components in natural gas service and correlate them with EPA Method 21 screening values. Originally the study was to include natural gas components in both liquid and gas phases. However, at the beginning of Phase II, the focus was restricted to natural gas components in gas service only. Emission results for the limited set of liquid service components tested are provided in Appendix E. The study was conducted in three (3) phases:

- 1. Phase I: January 20 to January 30 at sites within the South Coast Air Quality Management District and the Ventura County Air Pollution Control District;
- 2. Phase II: February 23 to March 3, 2015 at sites within the Glenn County and San Joaquin Valley Air Pollution Control Districts; and
- 3. Phase III: August 6 to August 14, 2015 at sites within the Feather River Air Quality Management District.

Emission testing was conducted at natural gas production facilities on valves, flanges, connectors, open-ended lines (OELs), and a diverse "catch-all" group of "Other" component types. The "Other" group, included gas regulators, pressure gauges, pressure relief devices (PRD), flow and pressure meter fittings, pneumatic devices, compressor vents, temperature controllers, and inactive flare pilots. Pumps were not tested since the study focused only on equipment in gas service. For each component tested, the following data was collected:

- Facility information (name, address, latitude/longitude, etc.);
- Sampling event information (date, time, weather, temperature pressure, percent relative humidity, barometric pressure, site photos, etc.);
- Method 21 equipment leak concentration reading, reported as methane, in parts per million by volume (ppmv); and
- The percent methane concentration, the sampled flow rate, and the calculated methane emission rate as reported by the Hi Flow Sampler.

2.1 **Sampling Methodology**

Equipment leaks were identified by EPA Method 21 using the Thermo Scientific Toxic Vapor Analyzer (TVA). The TVA uses a flame ionization detector (FID) to detect hydrocarbon leaks between 1 and 50,000 ppm. A calibrated dilution probe was used when it was necessary to extend the instrument range above 50,000 ppm¹. A FLIR GF-320 infrared (IR) camera was also used to survey all equipment for large leaks (i.e. leaks > 10,000 ppm). All leaks identified with the IR Camera were photo and video documented. Figures 2-2 and 2-3 show both instruments being used for leak detection during a typical natural gas well pad survey.

¹ Since the dilution probe's response can be easily changed just through regular handling, frequent verification checks of the dilution ratio were performed.

Figure 2-2 **Performing Method 21**

Figure 2-3 **IR Camera Imaging**

Mass emission testing was conducted on matrix-defined components using the Bacharach Hi Flow Sampler®. The Hi Flow Sampler is a portable, intrinsically safe instrument designed to measure the rate of gas leakage from various pipe fittings, valve packings and compressor seals in use at natural gas production facilities. Because of its high flow rate (8 to 10 standard cubic feet per minute) the Hi Flow Sampler is able in most cases to completely capture any gas leaking from a component. The mass emission rate of the gas leak is determined by the sampled flow rate and its methane concentration.

To make an emission measurement with the Hi Flow Sampler, an attachment is chosen that is suitable for enclosing the entire leak area. An assortment of attachments is provided with the instrument to enable testing of a wide variety of components. With one end of the attachment enclosing the emission source and the other end attached to the main sampling hose, the Hi Flow Sampler is switched on and sampling initiated using the menu options available through the unit's controller. An entire Hi Flow Sampler test run lasts approximately 3 to 5 minutes. Table 2-1 provides technical specifications for the Hi Flow Sampler. Figure 2-4 illustrates a Hi Flow Sampler test being conducted on a leaking compressor component.

Table 2-1 **Hi Flow Sampler Technical Specifications**

Specification		Description			
Information Displayed	 Date and Time Battery voltage Leak rate in cfm Sampling flow rate in cfm 	 Leak concentration in ppm or volume % Background gas concentration in ppm or volume % Percent difference between leak rate measurements #1 & #2 			
Display	8 line by 20-character LCD				
Communication	Three DB9 connectors providing	serial data transfer 115,200 baud			
Measured Values	Sampling flow rateBattery voltage	Sample gas concentrationBackground gas concentration			
Calculated Values	Leak concentration correctedLeak ratePercent difference between lea	for background gas level ak rate measurements #1 and #2			
Measurable	• 0.05 to 8.00 SCFM (1.42 to 22	26 LPM)			
Leak Rate	• 0.05 to 6.00 SCFM (1.42 to 1'	70 LPM)			
Sampling Flow Rate	 Maximum Operating Flow Points Measurement Method Accuracy 	 10.5 SCFM (297 LPM) at full battery charge Initial flow ~10 SCFM (283 LPM). Second flow ~8 SCFM (226 LPM). Differential pressure across restriction ±5% of reading 			
Natural Gas Sensor	 Accuracy Easy of reading Detection Method Range: Catalytic oxidation Range: Thermal conductivity To 5% by volume methane to 100% by volume methane to 100% by volume methane for reading to 100% by volume methane for reading to 100% by volume methane for reading 				
Battery • Voltage4.8 V, max. • Recharge Time8 to 10 hrs. • TypeIntrinsically safe NiMH recharge pack • Run Time>4.5 hours continuous @ 20 C.					
Memory	Stores up to 1,000 test parameters	S			
Weight	20 lbs. (9.1 kg)				
Intrinsic Safety	Intrinsically safe for use in Class America	I, Div. 1, Groups A, B, C, & D areas in North			

Figure 2-4
Emission Testing with the
Hi Flow Sampler

The Hi Flow Sampler has two on-board detectors, both calibrated to methane -- a Catalytic Oxidation Detector with a measurement range from 0% - 5% and a Thermal Conductivity Detector with a measurement range from 5% to 100%. The instrument automatically switches from one to the other depending on the sample concentration.

The Hi Flow Sampler was operated in its Automatic 2-Stage Mode for all emission tests. In this mode, a leak rate measurement is made first at a high flow rate setting for one minute, and then at a lower flow rate for a second minute of additional sampling. The unit calculates the degree of comparison between two measurements and displays their total sample flow rates in cubic feet per minute (CFM). The leak concentration is displayed as percent methane and the leak's methane emission rate as the percent of the sample flow rate (% CFM). If the two leak rates are within 10% of each other, then it is assumed that all the emitted gas was captured by the Hi Flow Sampler².

If the two leak rates differed by more than 10%, the Hi Flow attachment would be re-positioned and the test repeated until successful agreement was achieved or it was determined after several tries, that it could not be achieved. In the latter instance, the test was ended and the final results documented. In the subsequent calculation of emissions, the two results from each Hi Flow Samper test were averaged, except when they differed by more than 10%. In those cases, the higher of the two Hi Flow measurements was used.

A 2014 study has indicated that the Hi Flow Sampler is susceptible to underestimating natural gas emission rates due to a detector switching failure³. This failure was observed when calibration was more than two weeks old, firmware was out of date, and when the composition of natural gas was less than 91% methane. To avoid any possible misreading from the Hi Flow Sampler in this study, calibrations were performed daily. In addition, the firmware was up to

² Bacharach, Inc. (2015). Hi Flow® Sampler for Natural Gas Leak Rate Measurement. Rev. 7. Heath Consultants.

³ Journal of the Air & Waste Management Association. *Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure.* Volume 65, 2015 – Issue 7.

date, and the components tested were at gas processing plants and non-associated gas wells, both of which typically handle natural gas having a methane composition above 90%.

A characteristic of the Hi Flow Sampler is that it only displays leak concentrations in percentages. For example, if the sample stream contains less than one percent (1%) methane, then zero (0) % readings are displayed on the Hi Flow Sampler's controller. In such instances, the TVA was used to record the methane concentration in ppm at the Sampler's exhaust port. The resulting TVA concentration was then converted to a percentage⁴ and used to calculate the % CFM emission rate. Figure 2-5 shows an example of the TVA being used to measure Hi Flow Sampler emission concentrations.

Samples for laboratory analysis were collected in pairs from a subset of the monitored components. In Phase I, the sample pairs consisted of a canister sample for EPA Method TO-15 analysis and a 0.7-liter Tedlar® bag sample for ASTM 1945/3588 analysis. In Phases II and III samples for both analyses were collected in 0.7-liter Tedlar® bags only. The EPA Method TO-15 analysis tested for sixty-six (66) toxic organic compounds. The ASTM 1945/3588 analysis tested for oxygen (O₂), nitrogen (N₂), carbon monoxide (CO), carbon dioxide (CO₂), methane (CH₄), ethane (C₂H₆) and other selected light-end Volatile Organic Compounds (VOCs).

Figure 2-5 Using the TVA to Measure Sample **Concentrations < 1%**

Figure 2-6 Sample Collection with the Vac-U-Tube Sampler

Samples were collected at the exhaust port of the Hi Flow Sampler. For the canisters, which were under a vacuum, sample collection was accomplished by positioning the canister inlet line well

⁴ Using the equivalency of 10,000 ppm = 1%.

within the Hi Flow Sampler's exhaust stream, turning on the canister valve and metering the flow so that it did not exceed the Hi Flow Sampler's exhaust flow.

Tedlar bag samples were collected using a Vac-U-Tube® sampler. The Tedlar® bag was first attached inside the Vac-U-Tube. The inlet of the Vac-U-Tube was then positioned within the Hi Flow Sampler's exhaust stream and the bag filled and emptied by alternately pulling and pushing on the Vac-U-Tube's plunger. This flushing action was repeated three (3) times prior to sample collection. An example of a Tedlar® bag sample collection is provided in Figure 2-6.

Samples together with Chain-of-Custody (COC) documentation were shipped on the same day of collection by overnight express to Oilfield Environmental and Compliance, Inc. (OEC) in Santa Maria, California for analysis.

2.2 Direct Emission Calculations, Using Hi Flow Sampler Data

Emissions, as methane, from natural gas production facility component leaks were calculated according to the following steps:

1. The Hi Flow Sampler results were converted from percent concentration by volume to mg/m³ using Equation 5-1:

$$C = \frac{MW}{24.45} \times (Leak \% - Bkg \%) \times 10,000 \frac{ppmv}{\%vol}$$

Where:

= Concentration in mg/m³ C

MW = Molecular weight of analyte, CH₄ MW = 16.04 g/mol

= Molar volume in L/mol at 25°C (536.67°R) and 1 atm (29.92 inHg) 24.45 Leak % = Percent organics concentration by volume, of the leak, calibrated as CH₄

Bkg % = Percent concentration by volume of the background gas

10,000 = ppm in 1%

2. Equation 5-2 was used to standardize the Hi Flow Sample gas flow rate^{5,6}:

$$CFM_{std} = (CFM_{act}) \left(\frac{T_{std}}{T_{act}}\right) \left(\frac{P_{act}}{P_{std}}\right)$$

Where:

= Standardized volumetric flow rate (ft³/min) CFM_{std}

 CFM_{act} = Actual volumetric flow rate (ft³/min)

= Absolute gas temperature at standard conditions (298.15 K) T_{std}

= Absolute gas temperature at actual conditions (K) Tact

= Absolute barometric pressure at actual conditions (inHg) P_{act}

⁵ Per an email communication from the vendor of the Hi Flow Sampler, the sampler automatically corrects the ambient sample volume from ambient to Standard Temperature, 20 °C, but does not correct for pressure. Therefore, in the calculations, the general temperature correction term (T_{std}/T_{act}) noted above, is replaced with the correction factor (298.15 K / 293.15) in the spreadsheet calculations.

⁶ Standard temperature defined as 25°C per EPA "National Primary and Secondary Ambient Air Quality Standards", 40 CFR—Protection of the Environment, Chapter I, Part 50, Section 50.3, 1998. Since the Hi Flow Sampler uses 20°C for standard temperature, its flow data has been corrected to 25°C.

Pstd = Absolute gas pressure at standard conditions (29.92 inHg)

3. The emission rate of methane was calculated using Equation 5-3:

$$ER = C \times CFM_{std} \times \frac{CF}{2.205}$$

Where:

ER = Emission rate (kg/hr)

C = Analyte concentration (mg/m³)

= Standardized volumetric flow rate (ft³/min) CFM_{std}

= Conversion factor = $3.75E-06 [(1 \text{ m}^3/35.32147 \text{ ft}^3) \times 60 \text{ min/hr} \times 10^{-3}]$ CF

(1 lb/453592.37 mg)]

2.205 = pounds per kilogram

4. These three equations were combined to form Equation 5-4, which finds the emission rate in kilograms/hour.⁷

$$ER = \frac{MW}{24.45} \times (Leak \% - Bkg \%) \times 10,000 \ ppmv/\%vol \times (CFM_{act}) \left(\frac{T_{std}}{T_{act}}\right) \left(\frac{P_{act}}{P_{std}}\right) \times \frac{3.75E-06}{2.205}$$

2.3 **Development of Emissions Correlations by Component Type**

The selection of components for emission testing was guided by the unit specific EPA Correlation Approach as described in *Protocol for Equipment Leak Emission Estimates*⁸ (*Protocol*). For this method, as few as four (4) readings for each of five (5) concentration ranges (0 to < 100 ppm, 100 to < 1,000 ppm, 1,000 to < 10,000 ppm, 10,000 to < 100,000 ppm and > 10,000 ppm100,000 ppm) are considered adequate for the purposes of deriving the correlation equations. To provide greater statistical reliability, this project's goal was to obtain at least six (6) datasets for each combination of component type and concentration range. Table 2-2 defines the resulting project sampling matrix.

⁷ See previous footnote 4.

⁸ Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, November 1995.

Table 2-2 **Project Sample Design for Development of Natural Gas Production Facility-Specific Correlation Equations**

Natural Gas Leak Concentration Ranges Component Type	0<100 ppm	100<1,000 Ppm	1,000<10,000 ppm	10,000<100,000 ppm	≥100,000 ppm
Valves	6	6	6	6	6
Connectors	6	6	6	6	6
Flanges	6	6	6	6	6
OELs	6	6	6	6	6
Others	6	6	6	6	6
TOTALS	30	30	30	30	30

The field tests resulted in the collection of one hundred and sixty (160) Method 21 screening concentrations with associated mass emission rates. Following the procedures in Appendix B of the *Protocol*, these 160 mass emission rate/screening value data pairs were used to develop correlations specific to the natural gas production facilities that were tested in California.

Appendix B of the *Protocol* describes the use of a log₁₀-log₁₀ space linear regression correlation, using a Scale Bias Correction Factor (SBCF) to develop unit-specific correlations. The steps that were conducted to prepare the emissions correlations were as follows:

- 1. Obtain the required Method 21 monitoring data and the mass emission rates data.
- 2. Conduct a least squares regression of $Y = \text{the } \log_{10} \text{ values of the emission rates (kg/hr) versus}$ $X = log_{10}$ values of the corresponding Method 21 concentration measurements (ppm), to obtain:

 Log_{10} (Leak Rate, kg/hr, as methane) = $\beta_0 + \beta_1 \times Log_{10}$ (Monitored Leak Concentration, ppmv as methane).

3. This equation is transformed by using the calculated Scale Bias Correction Factor (SCBF), where:

> Leak Rate, kg/hr, as methane = SBCF x 10^{β_0} x (Monitored Leak Concentration, ppmy as methane) β^1 .

4. Note that the EPA Protocol often presents the equation noted in item 3 above, as follows:

Leak Rate, kg/hr, as methane = C1 x (Monitored Leak Concentration, ppmv as methane) $^{\beta 1}$,

Where C1 = SBCF x $10^{\beta 0}$.

The SBCF is required to transform the equation in the log-scale back to arithmetic space. The calculation method used to determine the SBCF is provided in Appendix C of the *Protocol*. An example calculation of the SBCF value for the flanges in gas service from data collected for this study is provided in Appendix C of this report.

2.4 **Sample Composition Results**

Thirty-five (35) samples were collected for laboratory analysis from components in gas service. From the combined analyte list of eight-four (84) compounds (Method TO-15 analytes + ASTM 1945/3588 analytes), twenty-seven (27) compounds were detected at least once (excluding oxygen, nitrogen, carbon dioxide and Total Petroleum Hydrocarbons). Of these, eleven (11) analytes, identified in Table 2-3 in order of decreasing emission rate, were detected in 10% or more of the samples with methane emission rates exceeding that of the other compounds by more than three (3) orders of magnitude.

Table 2-3 Frequently Occurring Compounds⁹

Analytes, sorted by average emission rate	Analytical Method
Methane	ASTM 1945/3588
Hexane	EPA Method TO-15
Cyclohexane	EPA Method TO-15
Heptane	EPA Method TO-15
Benzene	EPA Method TO-15
Toluene	EPA Method TO-15
Xylenes (total)	EPA Method TO-15
Isopropyl Alcohol	EPA Method TO-15
Ethylbenzene	EPA Method TO-15
Ethanol	EPA Method TO-15
Acetone	EPA Method TO-15

2.5 **Study Limitations**

While the development of correlation equations followed the approach described in the *Protocol*, the following limitations are to be noted:

- 1. EPA Protocol mass emission rates were developed from bagging studies which completely isolate each leaking component from the surrounding environment. Carrier flow gas through the bag is measured directly by a calibrated dry gas meter. However, the Hi Flow Sampler assumes total emissions capture due to its high-volume sampling rate. Sample flow is measured indirectly by means of differential pressure across a restriction.
- 2. The Hi Flow Sampler is designed to measure emissions from components in natural gas service. Since natural gas is primarily methane, the Hi Flow Sampler's sensors are calibrated

⁹ Analytes detected in more than 10% of the samples.

- to methane¹⁰ and all emission results are therefore reported as methane. EPA and The California Air Pollution Control Officers Association (CAPCOA) emission correlation studies report emissions as total organic compounds (TOC) based upon compound-specific concentrations obtained from gas chromatographic (GC) analysis of emission samples.
- 3. The EPA unit-specific correlation approach cautions that the correlations must be developed on a process unit basis in order to "...minimize the error associated with differing leak rate characteristics between units" (1995 EPA Protocol for Equipment Leak Emission Estimates, 1995 § 2.3.4). The data for the various component-type groups in this study was collected from different facilities situated in the south, central and northern areas of California. Sampling over such a broad geographic region can be expected to introduce some variability into the derived emission correlations.
- 4. The EPA Protocol states that as few as four (4) leak rate measurements of a particular component type in a particular service are sufficient for developing an emission to screening value correlation. The project goal was to collect at least six (6) measurements per component type-concentration range category (see Table 2-2). All but two of the component type groups, flanges and OELs, met the project sample design goal of six components per Method 21 concentration range for all ranges, and of these only flanges (in the two ranges 10K to <100K and >100K) failed to meet the EPA criterion of four. By combining the connectors and flanges into a single group, compliance with the EPA Protocol guidance of four components per cell is achieved, and only one category (OEL 1K to <10K) has less than the project's target of six (6) tested components per category. Table 2-4 summarizes the completed project test matrix, both with flanges as a separate group and with flanges combined with the connectors. Highlighted cells indicate where the project's sampling target was not achieved.
- 5. The measurements collected in this study were meant to fill in a matrix in order to develop correlation equations and not for the development of emission factors. As such, they do not account for super-emitters, and once a component's matrix was completed, additional leaks for that component type were disregarded.

-

¹⁰ The concentration of methane in natural gas typically varies between 87-96 mole percent (Natural Gas Spec Sheet at https://www.naesb.org/pdf2/wgq_bps100605w2.pdf. Revised 11/06/2003).

Table 2-4 **Completed Test Matrix**

Component Type in Gas	EPA Method 21 TVA Reading, ppmv CH ₄							
Service	0 - < 100	100 - < 1K	1K - < 10K	10K - < 100K	>= 100K	Sum		
Valves	7	7	6	7	6	33		
Connector	6	8	9	6	8	37		
Flange	7	6	6	1	2	22		
Connectors + Flanges	13	14	15	7	10	59		
OEL	9	6	4	7	8	34		
Other	6	6	6	8	8	34		
TOTAL	35	33	31	29	32	160		

2.6 Results

The field tests resulted in a methane-equivalent mass emission rate and corresponding Method 21 screening value associated with each individual component that was measured with the Hi Flow Sampler. This data was first analyzed in log space to relate the logarithm of the screening value to the logarithm of the mass emission rate. The resulting expressions were then transformed to arithmetic space using the slope (β_0), intercept (β_1), and a scale bias correction factor (SCBF) to derive the correlation equations. The SBCF is a correction factor used to account for the variability of the data in the log space. Table 2-5 reports the coefficients from the log₁₀-log₁₀ linear regression correlations results and the calculated Scale Bias Correction values developed in this study (2015 CARB Study).

Table 2-5 2015 CARB Study Gas Service Correlation Model Parameters

		2015 CARB Study						
Component Type	Gas Service Natural Gas Production Sites							
	N	SBCF	$oldsymbol{eta_0}$	β1	\mathbf{r}^2			
Valves	33	8.6458	-5.8151	0.8118	0.609			
Connectors	37	3.6238	-5.3682	0.6848	0.635			
Flanges	22	17.9752	-3.6886	0.3369	0.185			
Connectors & Flanges	59	10.1848	-4.3871	0.4666	0.352			
OELs	34	4.4355	-4.7358	0.7157	0.753			
Other	34	4.2958	-5.2801	0.7902	0.645			

N = Number of Samples

SBCF = Scale Bias Correction Factor, for log10 values

 β_0 = Intercept of regression line

 β_1 = Slope of regression line

 r^2 = Coefficient of determination

Note that in this study's results, with the exception of Flanges, where the regression coefficient (r²) was equal to 0.185, and the combined group of Connectors and Flanges which had an r² value of 0.352, regression coefficient values for the rest of the component types ranged from 0.609 for Valves to 0.753 for OELs. R^2 values > 0.7 are considered an indication of a good correlation, if other regression model assumptions are met. As discussed earlier, the number of flanges in gas service, in the two highest leak concentration ranges of 50,000 to < 100,000 ppmv and >100,000 was below the project goal of six (6) and below the EPA Protocol guidance of four (4), considered to be sufficient to obtain a good correlation. It was hoped that combining the Connectors and Flanges data would provide sufficient counts to obtain a good regression model with a high r² regression correlation factor. As indicated in the table above however, the combined data subsets linear regression had an r² value of 0.352.

Table 2-6 below presents the regression model equations developed in this study, using the results from Table 2-5. By inputting a Method 21 screening concentration for the SV, the equation calculates the Leak Rate in kilograms/hour (kg/hr) as methane at standard conditions of 25°C and 1 atmosphere. Results from the corresponding CAPCOA Screening Value Range Emission Factors are provided for comparison.

It is important to note that the 2015 CARB correlation equations and the CAPCOA Screening Value Range Emission Factors were developed using different EPA Protocol methods and are not directly comparable for the following reasons:

- The CAPCOA Screening Value Range Emission Factors method provides a means of estimating mass fugitive emissions by applying an average emission rate to components with screening values below 10,000 ppmv, and a second average emission rate to components with screening values above 10,000 ppmv. A disadvantage of this method is that it assumes that an average leak rate within a screening range can be applied to all leak sizes and facilites.
- The Correlation Equations developed in this 2015 CARB study were derived from the modeling of Method 21 concentrations and their mass emissions rates as measured with the Hi Flow Sampler, using a log-log linear regression model, for each equipment type. Like the CAPCOA Screening Value Range Emission Factors method, the Correlation Equation method requires that all components must be screened with portable analyzers. The difference is that instead of simply counting the components with screening values below 10,000 ppmv and multiplying the number by a Screening Value Range Emission Factor, each individual screening result is documented and emissions are calculated for each component. The Correlation Equation is, therefore, a more refined method of estimating fugitive emissions and more accurately reflects variations in leak frequency and, to some extent, changes in leak size due to changes in equipment and changes in operational procedures.
- The equations in this 2015 CARB study predict methane-equivalent total hydrocarbon emissions for equipment in gas phase at natural gas production facilities (i.e. wells and gas plants) by inputting a screening value (concentration in ppmv) into the equation. and

The CAPCOA Screening Value Range Emission Factors for oil and gas production facilities predict total hydrocarbon emissions based upon sample speciation results and do not distinguish between gas and light liquid phases.

Table 2-6 Derived 2015 CARB Study Equations

Component Type (Gas Service Only)	2015 CARB Study Correlation Equations	1999 CAPCOA Study ⁴	
	Correlation ^{1,2,3}	< 10,000 ppmv	≥ 10,000 ppmv
Valves	Leak Rate (kg/hr) = $1.3236E-05 \times SV^{0.81180}$	3.50E-05	1.39E-01
Connectors	Leak Rate (kg/hr) = $1.5523E-05 \times SV^{0.6848}$	1.20E-05	2.59E-02
Flanges	Leak Rate (kg/hr) = $3.6815E-03 \times SV^{0.3369}$	2.80E-05	5.49E-02
Connectors & Flanges	Leak Rate (kg/hr) = $4.1772E-04 \times SV^{0.4666}$		
OELs	Leak Rate (kg/hr) = $8.1490E-05 \times SV^{0.7157}$	2.40E-05	1.39E-01
Other	Leak Rate (kg/hr) = $2.2542E-05 \times SV^{0.7902}$	1.47E-04	1.38E-01

¹ SV = Method 21 Screening Value in ppmv

Y = mass emission rate TOC as methane in kilograms/hour

C1 = Scale Bias Correction Factor (SBCF) x $10^{\bar{b}0}$

SV = Screening Value in ppm TOC as methane

 β^0 and β^1 are the slope and intercept of the log10-log10 linear regression line.

² These correlations predict methane-equivalent Total Organic Compound (TOC) emission rates.

³ The correlation equations are presented in the form $y = C1 \times SV^{b1}$,

⁴ CARB-CAPCOA. California Implementation Guidelines for Estimating Mass Emissions of Fugitive Hydrocarbon Leaks at Petroleum Facilities, Table IV-2c., "CAPCOA Oil and Gas Production Screening Value Range Emission Factors, February 1999.

The resulting correlation plots for the different component types are provided in the following figures.

Figure 2-7 Correlation Plot for Valves in Gas Service

Figure 2-8 Correlation Plot for Connectors in Gas Service

Flanges in Gas Service y = 0.3369x - 3.6886 $R^2 = 0.1852$ 4 log10 (Total TOCs Mass Emissions Rate, kg/hr as methane) 2 0 -2 -4 -6

log10 (TVA Readings, ppmv as methane)

Mass Emissions Rates vs TVA Reading - - - Linear (Mass Emissions Rates vs TVA Reading)

Figure 2-9 Correlation Plot for Flanges in Gas Service

-8

-10

-12

-1

0

6

7

Figure 2-10 Correlation Plot for Connectors & Flanges in Gas Service

Figure 2-11 Correlation Plot for OELs in Gas Service

Figure 2-12 Correlation Plot for "Other" Components in Gas Service

The accompanying appendices to this report provide supporting information:

- Appendix A: Field and Lab Data Results and Calculations
- Appendix B: Correlation Plots of Mass Emission Rates vs. Leaking Equipment Concentrations
 - Correlation Plot for Gas Valves;
 - Correlation Plot for Connectors;
 - Correlation Plot for Flanges;
 - Correlation Plot for Connectors & Flanges;
 - Correlation Plot for OELs; and
 - Correlation Plot for "Other" Components.
- Appendix C:
 - An Example Calculation of Mean Square Error Used to Calculate the Scale Bias Correction Factor for Flanges in Gas Service
 - An Example Calculation of the Scale Bias Correction Factor for Flanges in Gas Service
- Appendix D: Notes to Updated Calculations 08/20/2019.

3.1 Introduction

As stated in Section I. Purpose/Background/Scope of Work of RFP No. 13-414, an objective of this project was to "...evaluate the effectiveness of various instruments and techniques at detecting and measuring greenhouse gases (GHGs) and volatile organic compounds (VOCs)" at upstream oil and gas facilities for the purpose of determining "...the feasibility of integrating GHG and VOC measurements into a single Inspection and Maintenance (I&M) program that could serve as the basis for new leak standards." This section reports the results of field evaluations conducted at natural gas production facilities using six commercially available instruments designed to detect GHG and VOC contributing emissions from equipment leaks. While there are several Greenhouse Gases, this study focused specifically on the detection of methane from fugitive emissions. The six instruments used in the field evaluations were:

- Thermo Scientific TVA 1000B:
- RKI Eagle;
- Heath Consultant's Remote Methane Leak Detector (RMLD);
- COSMOS XP-3160;
- FLIR GF-320 Infrared Camera; and
- Picarro Surveyor.

3.2 **TVA 1000B**

The Thermo Scientific TVA 1000B is an intrinsically safe, organic vapor analyzer popularly used by refinery, chemical and petrochemical facilities in their Leak Detection and Repair (LDAR) programs. LDAR programs are government mandated programs designed to control fugitive emissions from equipment leaks. The TVA uses a Flame Ionization Detector (FID) which responds to a broad variety of hydrocarbons over a wide concentration range (0-50,000 ppm). The analyzer is portable, most often carried in a

small backpack or by a shoulder strap and comes with a handheld probe which displays concentration results in either parts per million (ppm) or percentage (%). The FID is fueled by hydrogen gas from an on-board cylinder which holds sufficient hydrogen for one day of continuous operation. Analyzer specifications are provided in Table 3-1.

Table 3-1 **TVA-1000B Toxic Vapor Analyzer Specifications**

Description	Specification	
Safety Certification	FM (Class 1, Div. 1. Groups A B C & D Hazardous Location. Temp. Class T4	
Detection Principle	Flame Ionization Detector	
Data logging	Onboard	
Probe Display	Bar graph & 4-digit LCD	
Range	0.5-50,000 ppm methane	
Sample Flow Rate	1 liter/minute	
Response Time	4 seconds	
Power	Rechargeable NiCad battery	
Fuel	99.99% hydrogen	
Operating Time	8 hours	
Repeatability	<u>+</u> 2%	
Accuracy	25% of reading or 2.5 ppm, whichever is greater	

3.3 **RKI Eagle**

The RKI Eagle Model 1 is an intrinsically safe, portable gas detector manufactured by RKI Instruments. It uses catalytic combustion, electrochemical cell, galvanic cell, and infrared sensors to detect LEL, Oxygen (O₂), Hydrogen Sulfide (H₂S), Carbon Monoxide (CO) and Methane (CH₄) and other hydrocarbons. Since it does not have an FID, hydrogen gas is not required for its operation. The Eagle is typically used for health and safety purposes, such as for confined space entry, worker exposure surveys, and pipeline leak monitoring and also can be used to conduct fugitive emissions testing according to Method 21 specifications. It is used frequently at natural gas

facilities but infrequently in refinery, chemical, or petrochemical LDAR programs. Instrument specifications for the RKI Eagle Model 1 are provided in Table 3-2.

Table 3-2 **RKI Eagle Model 1Specifications**

Parameter	VOC	
Safety Certification	CSA and CE approved; Intrinsically safe, Class I, Groups A, B, C, D	
Data logging	Optional feature for up to 4 gases	
Range	0 to 50,000 ppm	
Display	4 x 20 LCD readout with backlighting	
Sample Flow Rate	Approximately 2 SCFH	
Response Time	30 seconds	
Power	4 Size D batteries (alkaline or Ni-Cad)	
Fuel	Not Applicable – solid state sensors	
Operating Time	30 hours (alkaline batteries)/18 hours (Ni-Cad)	
Detection Principle	Catalytic Oxidation	
Accuracy	$\pm 0.5 \text{ ppm}$	

3.4 **RMLD**

The Remote Methane Leak Detector (RMLD) is a methane emission detection device manufactured by Heath Consultants. It detects emissions using Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a detection range between 1 to 99,999 parts per million – meter (ppm-m). The RMLD is able to survey for gas emissions from distances as far as 100 feet or 30 meters allowing remote detection of difficult to access places. A reflective background is necessary since the instrument depends upon the

reflection of a transmitted laser beam to determine methane concentrations. The RMLD, although it has an intrinsic safety rating, does not meet Method 21 analyzer requirements. Instrument specifications are provided in Table 3-3.

Table 3-3 **RMLD Analyzer Specifications**

Parameter	Specification
Intrinsic Safety	Class 1 Div. 1 Group D, T4
Data logging	External capability
Measurement Range	1-99,999 ppm-m
Display	LCD 0.75-inch
Sample Flow Rate	Not Applicable
Power	Li-Ion Battery
Fuel	Not Applicable
Operating Time	8 hours
Detection Principle	TDLAS
Accuracy	5 ppm-m from 0-50 ft 10 ppm-m from 50-100 ft

3.5 COSMOS XP-3160

The COSMOS XP-3160 is a compact and lightweight portable analyzer capable of detecting various combustible gases in one of two selectable ranges: 0-500 ppm and 0-10,000 ppm. Like the RKI Eagle, the COSMOS XP-3160 uses a catalytic combustion sensor. The COSMOS is Method 21 compatible and is rated intrinsically safe. Instrument specifications are provided in Table 3-4. It is the smallest and lightest of the instruments tested.

Table 3-4 **COSMOS XP-3160 Analyzer Specifications**

Parameter	Specification
Intrinsic Safety	Exibd II BT3
Detection Principle	Catalytic combustion
Data logging	Onboard Optional logger
Probe Display	Digital
Range	0-5,000 ppm or 0-10,000 ppm
Sample Flow Rate	Not specified
Response Time	Not specified
Power	4 AA manganese batteries
Fuel	Not Applicable – solid state sensor
Operating Time	Up to 20 hours on AA manganese cells or up to 5 hours with optional rechargeable NiCd
Accuracy	±10% Low range; ±5% High range

3.6 FLIR GF-320 Infrared Camera

FLIR's GF-320 IR camera detects hydrocarbon emissions otherwise invisible to the eye by being tuned to a very narrow spectral infrared region. This, in addition to a highly sensitive cryo-cooled detector makes it possible for the camera to detect and make visible hydrocarbon emissions from component leaks. The camera's High Sensitivity Mode enables viewing of even relatively small leaks against stationary backgrounds. The GF-320 has the ability to screen large populations of components for fugitive emissions. IR camera technology has been accepted by EPA as an

alternative to Method 21 provided certain conditions are met. Table 3-5 provides key specifications. Table 3-6 indicates the Minimum Detected Leak Rate of the GF-320 for various hydrocarbon gas species, as reported by the camera's manufacturer, FLIR, from a controlled laboratory study.

Table 3-5 FLIR GF320 IR Camera Specifications

Parameter	Specification		
Intrinsic Safety	Not intrinsically safe		
Detection Principle	IR absorption		
Data logging	Image storing capability – removable SD Memory cards		
Probe Display	LCD screen for image viewing		
Range	2,500 -99,999 ppm		

Table 3-5 (Continued) FLIR GF320 IR Camera Specifications

Parameter	Specification
Sample Flow Rate	Not applicable
Response Time	Not applicable
Power	Rechargeable LiIon battery
Fuel	Not Applicable
Operating Time	3 hours continuous use
Accuracy	Not Applicable

Table 3-6 **GF-320 IR Camera Minimum Detected Leak Rate**

Compound	Detected Leak Rate ¹ (g/hr)	MW (g/mol)	ppmv ²
1-Pentene	5.60	70.13	1966
Benzene	3.50	78.11	1103
Butane	0.40	58.12	169
Ethane	0.60	30.07	491
Ethanol	0.70	46.07	374
Ethylbenzene	1.50	106.17	348
Ethylene	4.40	28.05	3862
Heptane	1.80	100.21	442
Hexane	1.70	86.18	486
Isoprene	8.10	68.12	2927
Methyl Ethyl Ketone	3.50	72.11	1195
Methane	0.80	16.04	1228
Methanol	3.80	32.04	2920
Methyl Isobutyl Ketone	2.10	100.16	516
Octane	1.20	114.23	259
Pentane	3.00	72.15	1024
Propane	0.40	44.10	223
Propylene	2.90	42.08	1697
Toluene	3.80	92.14	1015
Xylene	1.90	106.16	441

¹Under laboratory conditions as stated on the FLIR webpage, http://www.flir.com/ogi/display/?id=55671.

These values were obtained in a wind tunnel with a path length of 30 meters, under well-controlled conditions and are not expected to be consistent with real world results.

 $^{^{2}}$ All calculations according to Ideal Gas Law pv = nRT

Assumed, Pressure = 101,326 Pa, R = 8.3145 J/mol·K, Temperature = 300 K

3.7 The Picarro Surveyor

The Picarro Surveyor is a mobile emissions monitoring system that surveys for equipment leaks at moderate driving speeds using Cavity Ring-Down Spectroscopy (CRDS). In CRDS a laser beam enters a small cylinder (i.e. cavity) where it is reflected multiple times by three mirrors. The laser is then turned off. In the absence of a light source, the light intensity inside the cavity leaks out to zero in an

exponential fashion. The ring-down time needed to reach zero is measured. When a gas that absorbs the laser light is introduced into the cavity the ring-down time is accelerated. The Picarro system compares the ring-down time of the cavity without the gas and with it to produce precise, concentration measurements. System specifications are listed in Table 3-7.

Table 3-7 Picarro Surveyor Specifications

Parameter	Specification		
Intrinsic Safety	No		
Detection Principle	CRDS		
Data logging	Yes		
Probe Display	i-Pad or Android Display		
Range	Unavailable		
Sample Flow Rate	Unavailable		
Response Time	Unavailable		
Power	Inverted 12 vdc		
Fuel	Not Applicable		
Operating Time	Continuous		
Accuracy	PPB Sensitivity, Precision, and Accuracy		

3.8 **Instrument Evaluation Results**

3.8.1 Methodology

To determine the suitability of the various instruments for detection of VOC emissions from equipment leaks, four instrument evaluations were performed. The first evaluation compared the TVA, RMLD, Eagle, COSMOS, IR Camera and Picarro Surveyor using key performance indicators. The second evaluation employed comparative monitoring to assess the field responses of the three Method 21 compatible instruments – the TVA, COSMOS and Eagle. The third evaluation used comparative monitoring to measure how well the RMLD and the IR Camera compared in detecting large, significant leaks. The fourth evaluation tested the ability of the Picarro Surveyor and the IR Camera to quickly identify significant equipment emissions at four sites.

3.8.2 Evaluation #1: Key Performance Indicators (TVA, RMLD, Eagle, COSMOS, IR Camera, Picarro Surveyor)

The Key Performance Indicators (KPIs) listed in Table 3-8 provide metrics which can be used to evaluate the suitability of each of the tested instruments for VOC monitoring by well pad operations and maintenance staff.

Table 3-8 **Analyzer KPIs**

Key Performance			Instrument	;		Picarro
Parameter	TVA	RMLD	Eagle	COSMOS	IR Camera	Surveyor
Meets M21 performance specifications	Yes	No	Yes	Yes	No ¹	No
Weight (lbs)	12	6	5	1	5.3	Not Available
Remote Detection Capability	No	Yes	No	No	Yes	Yes
Auto Self-Test?	Yes	Yes	Yes	Yes	Yes	Yes
Auto-calibration	No ²	Yes	Yes	Yes	NA ³	Yes
Detects hydrocarbons other than Methane?	Yes	No	Yes	Yes	Yes	Yes
Requires reflective surface behind component?	No	Yes	No	No	No	No
Able to measure emissions in ppm?	Yes	No ⁴	Yes	Yes	No	Yes
Easy to identify specific leak point on the leak interface?	Yes	No	Yes	Yes	Yes	No
Can be calibrated with different concentrations to determine response linearity?	Yes	No	No	Yes	No	Not Applicable
Response Time (seconds, under ideal conditions)	< 4	NA ⁵	< 30	< 30	NA ⁵	NA ⁵
Instrument Cost (approximate, dollars)	\$10,000	\$20,000	\$3,800	\$1,500	\$85,000	Not Available
Upper Measurement Range (ppm)	50,0006	100%	50,000	10,000	100%	100%
Detector Type	FID/PID ⁷	TDLAS ⁸	Catalytic Combustion	Catalytic Combustion	Passive IR	Cavity Ring- Down Spectroscopy
Detection Limit (ppm, at ideal conditions)	1	5 ppm-m	1	1	$\geq 10,000$ ppm ⁹	ppb levels
Support gases required (other than for calibration)	Yes ¹⁰	No	No	No	No	No
Battery longevity (hours, under ideal conditions)	10	8	30		3	Not Applicable

Table 3-8 (Continued) **Analyzer KPIs**

Key Performance		Picarro				
Parameter Parameter	TVA	RMLD	Eagle	COSMOS	IR Camera	Surveyor
Battery Cost (\$) ¹¹	\$609	\$389	\$10 - \$50	\$15	\$210	Not Applicable
Intrinsic Safety Rating	Yes	Yes	Yes	Yes	No	No
Field Suitable?	Yes	Yes	Yes	Yes	Yes	Yes
Instrument manual- ease of use (Scale 1-5) ¹²	3	5	5	3	4	Not Available
Learning Curve (Scale 1-5)	5	2	2	2	5	Not Available

Notes:

Evaluation #2: Method 21 Monitoring (TVA, Eagle, COSMOS)

A comparative monitoring evaluation of the three instruments that meet Method 21 performance criteria – the TVA, Eagle, and COSMOS, was conducted on forty-nine (49) components at a natural gas processing facility. Each component was monitored by each instrument in close succession. The resulting concentrations are reported in Table 3-9 together with the standard deviation (σ) from the mean for each set of results. The results are grouped by concentration.

¹The IR Camera is considered an acceptable alternative to Method 21 by EPA and several states.

²The TVA requires calibration with one or more methane standards having a certified accuracy of $\pm 2\%$.

³The IR Camera does not require calibration since it does not measure concentration. If used as an alternative to Method 21, it does require a daily instrument check using a known gas emission rate.

⁴The RMLD indicates concentration in ppm-meters.

⁵For the RMLD, Picarro Surveyor and IR camera, detection is near-instantaneous.

⁶500,000 ppm with dilution probe.

⁷Flame Ionization Detector/Photo Ionization Detector.

⁸Tunable Diode Laser Absorption Spectroscopy

⁹Typical for field conditions – lower concentrations are detectable with the camera depending upon operator experience and environmental conditions.

¹⁰The TVA's FID uses hydrogen gas for fuel.

¹¹The TVA, Heath RMLD and IR Camera batteries are internally located and are rechargeable. The cost reflects the approximate costs of replacement. The RKI Eagle can use size D Alkaline or Rechargeable Ni-Cad batteries. The COSMOS uses non-rechargeable alkaline batteries.

 $^{^{12}}$ 1 = easy: 5 = difficult

Table 3-9 **Comparative Monitoring Results for Method 21 Compatible Instruments**

				Leak Cond	entration	
Leak Range	Item	Component	TVA	RKI Eagle	COSMOS	σ
(ppm)	#	Description	(ppm)	(ppm)	(ppm)	(ppm)
	1	Ball Valve	1	0	0	1
	2	Ball Valve	1	0	0	1
	3	PRV Weep Hole	2	0	0	1
	4	Ball Valve	2	0	0	1
	5	Connector	5	0	0	3
	6	PRV Weep Hole	5	0	0	3
	7	Flange	7	0	10	5
	8	Connector	7	0	15	8
	9	Flange	8	0	10	5
	10	Connector	8	5	10	3
	11	Connector	10	10	0	6
	12	OEL	10	0	0	6
	13	Connector	10	0	20	10
	14	Connector	11	0	25	13
	15	Connector	12	10	20	5
	16	Ball Valve	12	5	50	24
	17	Flange	13	0	30	15
	18	Connector	13	10	20	5
0 400 nnm	19	Connector	14	10	40	16
0 - 499 ppm	20	Connector	14	5	15	6
	21	Connector	15	15	30	9
	22	Ball Valve	15	5	50	24
	23	Connector	20	10	10	6
	24	Connector	20	10	30	10
	25	Connector	20	15	40	13
	26	Connector	20	15	30	8
	27	Flange	20	40	70	25
	28	PRV Weep Hole	20	10	40	15
	29	OEL	20	20	40	12
	30	OEL	22	10	60	26
	31	Connector	23	20	30	5
	32	Connector	25	20	30	5
	33	Flange	30	25	50	13
	34	Flange	35	25	40	8
	35	Valve	50	100	40	32
	36	Pressure Regulator	150	100	110	26
	37	Crack Case Vent	230	200	270	35
	38	Control Valve	450	410	710	163

Table 3-9 (Continued) **Comparative Monitoring Results for Method 21 Compatible Instruments**

I I D	T	6 4		Leak Cond	centration	
Leak Range	Item #	Component	TVA	RKI Eagle	COSMOS	σ
(ppm)	#	Description	(ppm)	(ppm)	(ppm)	(ppm)
500 - 1,999 ppm	39	Level Controller	1,200	1,200	1,400	115
	40	Connector	3,100	2,390	3,400	519
2 000	41	OEL	3,200	3,450	8,900	3221
2,000 - 9,999 ppm	42	Controller	5,000	5,400	5,800	400
),555 ppiii	43	Pressure Regulator	6,100	4,900	7,300	1200
	44	Connector	6,900	3,400	10,100	3351
	45	Level Controller	12,300	12,400	>11,0001	71
≥10,000 ppm	46	Level Controller	24,000	>50,0002	>11,0001	
	47	OEL	30,000	28,000	>110001	1414
	48	Gate Valve	>500003	$>50,000^2$	>110001	
	49	Controller	$>50000^3$	>50,000 ²	>110001	

¹The COSMOS has an upper measurement range of 10,000 ppm.

Among the thirty-eight (38) components in the 0-499 ppm range, there was near-perfect agreement among the analyzers that these components were below the 500 ppm leak threshold. The one exception was with component #38. Both the TVA and the Eagle registered component #38 as a non-leaker (i.e. below 500 ppm). The COSMOS, however measured 710 ppm for this component which would mandate a 15-day repair deadline under certain federal regulations.

There was only one component with a concentration in the 500-1,999 ppm range, #39, and the three analyzers closely agreed with one another on its leak concentration.

Among the five (5) components with leaks in the 2,000-9,999 ppm range, there was one instance of disagreement. Both the TVA and the Eagle recorded <10,000 ppm for component #44, while the COSMOS measured a concentration slightly above 10,000 ppm identifying it as a leaker subject to a 15-day repair deadline.

There were five (5) components in the >10,000 ppm leak range (#45-#49). Since the COSMOS has an upper range of 10,000 ppm, it consistently read off-scale in this category. The TVA and the Eagle agreed closely on the concentrations of components #45 and #47 and both read offscale for components #48 and #49. On component #46, however, the TVA recorded a concentration of 24,000 ppm while the Eagle produced an off-scale (>50,000 ppm) reading.

These results suggest that each analyzer is most likely proficient in identifying leaks at various regulatory leak thresholds. It should be noted, however, that the results are only the responses of three individual analyzers on a specific day. A more rigorous evaluation of instrument variance would require multiple studies with perhaps three to six analyzers of each type.

²The RKI Eagle has a VOC upper measurement range of 50,000 ppm.

³The TVA has a linear VOC upper measurement range of 50,000 ppm.

3.8.4 Evaluation #3: Comparative Monitoring (RMLD, IR Camera)

A comparative monitoring study was conducted to evaluate the leak detection abilities of the two remote sensing instruments – the RMLD and IR Camera. The study was conducted on March 3, 2015 at a gas plant truck loading terminal in the Bakersfield area. The RMLD operator and the IR Camera operators worked independently in different lanes surveying all of the components in each lane and documenting whenever a component leak was detected by their instrument. Table 3-10 and Figure 3-1 provide the comparative monitoring results for these two instruments.

Table 3-10 Comparative Monitoring Results: RMLD & IR Camera

Lane	# Leaks Detected by RMLD	# Leaks Detected by IR Camera
1	3	2
2	0	1
3	1	1
4	1	1
5	0	2
6	0	0
7	1	1
8	0	0
TOTALS	6	8

Figure 3-1 Comparative Monitoring Results: RMLD & IR Camera

The comparative monitoring results indicate generally good agreement between the RMLD and the IR Camera. In the eight truck loading lanes, six (6) leaks were detected with the RMLD while eight (8) were seen with IR camera. A Chi Square test comparing actual number of leaks found with the expected number indicates a 70% probability that the two instruments are equally effective at detecting large VOC leaks.

Evaluation #4: Comparative Monitoring (IR Camera and the Picarro Surveyor)

An evaluation of the IR Camera and the Picarro Surveyor was carried out on August 11th, 12th and 13th at four natural gas well sites. The IR Camera operator and the Picarro Surveyor operator conducted VOC monitoring independently and at separate sites with neither informed of the other's results. Table 3-11 reports the number of leak areas identified by the Picarro Surveyor and the number of leaking components seen with the IR Camera for each site. Note that while the IR Camera is able to identify specific leaking components, the Surveyor identifies general leak areas which may contain one or more individual component leaks.

Table 3-11 PICARRO Surveyor & IR Camera

C:4a	Pica	ırro	IR Camera	
Site	Test Date	#Leak Areas	Test Date	#Leaks
1	August 11, 2015	3	August 12, 2015	7
2	August 11, 2015	3	August 12, 2015	3
3	August 11, 2015	3	August 12, 2015	4
4	August 11, 2015	3	August 13, 2015	3

Additional survey details are provided in Figures 3-2 to 3-5 and Tables 3-12 to 3-15.

Figure 3-2 Site #1: Picarro Surveyor & IR Camera Results

Site #1 was monitored by the Picarro Surveyor on August 11, 2015 between 12:47 and 13:09. Winds were light and from the north-northwest at the time. The site was divided into five areas with the following results: the Surveyor detected emissions in Areas #1 and #3 (circled in yellow), detected no emissions in Area #5 and was unable to survey downwind of the equipment in Areas #2 and #4.

Site #1 was imaged with the IR Camera on the morning of the following day on August 12, 2015, again under low wind conditions. Seven equipment leaks (indicated by numbered red circles) were identified with the IR Camera between 09:21 and 09:40: one from Area #1, two from Area 2, three from Area 3 and one from Area 4. No emissions were detected by the camera in Area 5.

Table 3-12 summarizes the Site #1 area results.

Table 3-12 Site #1 Emissions by Area

Amaa	Emissions Detected			
Area	Picarro	IR Camera		
1	Yes	Yes		
2	No	Yes		
3	Yes	Yes		
4	No	Yes		
5	No	No		

Figure 3-3 Site #2: Picarro Surveyor & IR Camera Results

Site #2 was monitored by the Picarro Surveyor on August 11, 2015 between 13:21 and 13:39. Winds were light and predominantly out of the north at the time. The site was divided into four areas with the following results: the Surveyor detected emissions in all areas (circled in yellow).

Site #2 was surveyed with the IR Camera in the late morning of August 12, 2015. Three equipment leaks (indicated by numbered red circles) were identified with the IR Camera between 11:25 and 11:37 from Areas #1, #2, and #4.

Table 3-13 summarizes the Site #2 area results.

Table 3-13
Site #2 Emissions by Area

Amaa	Emissions Detected					
Area	Picarro	IR Camera				
1	Yes	Yes				
2	Yes	Yes				
3	Yes	No				
4	Yes	Yes				

Figure 3-4 Site #3: Picarro Surveyor & IR Camera Results

Site #3 was monitored by the Picarro Surveyor on August 11, 2015 between 13:43 and 14:03. Winds were predominantly out of the north at the time. The site was divided into four areas with the following results: the Surveyor detected emissions in Areas #2, #3 and #4 (circled in yellow).

Site #3 was surveyed with the IR Camera in the early afternoon of August 12, 2015. Four equipment leaks (indicated by numbered red circles) were identified with the IR Camera between 12:31 and 12:45 – one each in Areas #1 and #2, and two in Area 3.

Table 3-14 summarizes the Site #3 area results.

Table 3-14 Site #3 Emissions by Area

Amaa	Emissions	s Detected
Area	Picarro	IR Camera
1	No	Yes
2	Yes	Yes
3	Yes	Yes
4	Yes	No

Figure 3-5 Site #4: Picarro Surveyor & IR Camera Results

Site #4 was monitored by the Picarro Surveyor on August 11, 2015 between 14:17 and 14:30. Light winds out of the north were prevalent at the time. The site was divided into five areas with the following results: the Surveyor detected emissions in Areas #1, #2 and #3 (circled in yellow). No emissions were detected by the Surveyor in Area #4. Area #5 could not be monitored since a suitable downwind location was not accessible to the Surveyor.

Site #4 was surveyed with the IR Camera in the early afternoon of August 10, 2015. Eight equipment leaks (indicated by numbered red circles) were identified with the IR Camera between 12:50 and 13:27 – 4 in Area #2, 3 in Area #3 and one in Area 5. No emissions were detected from Area #4 by the Camera.

Table 3-15 summarizes the Site #4 area results.

Table 3-15 Site #4 Emissions by Area

Amaa	Emissions	s Detected
Area	Picarro	IR Camera
1	Yes	No
2	Yes	Yes
3	Yes	Yes
4	No	No
5	No	Yes

3.9 Conclusions

The evaluation of the Method 21-compliant analyzers – the TVA, Eagle, and COSMOS -- found only small differences in the ability of these analyzers to detect methane and VOC fugitive emissions. Similarly, the remote sensing instruments -- the RMLD, IR Camera and Picarro Surveyor -- compared favorably in their ability to detect significant emissions. The selection of a particular instrument for fugitive emission monitoring will be guided then upon the particular application, the allotted budget and the level of required operator proficiency and/or training required. The following summaries may also assist in that selection.

Greenhouse Gas and VOC Detection -- Methane (CH4) is a major Greenhouse Gas (GHG). VOCs are volatile compounds that contribute to the formation of smog. Emissions from equipment leaks contribute to atmospheric methane and VOCs resulting in global warming and smog. The TVA, Eagle, COSMOS, IR Camera and Picarro Surveyor all effectively detect these emissions with the following qualifications:

- The RMLD is limited to detecting only methane;
- The COSMOS has an upper measurement range of 10,000 ppm; and
- The RMLD and the Picarro Surveyor identify leak areas but not necessarily specific leaking components.

Concentration Measurement -- The TVA, Eagle, and COSMOS provide component leak concentration measurements in ppm. The Picarro Surveyor provides ambient air concentrations but not component leak concentrations. The RMLD provides concentration measurements in ppm-meters. The IR Camera does not provide any concentration measurements.

Method 21 Compliance – Of the instruments tested, only the TVA, Eagle, or COSMOS comply with Method 21 performance specifications. A forty-nine component side-by-side test of these analyzers suggests that each is effective in identifying leaks at various federal regulatory leak thresholds. The TVA is the most popular Method 21 analyzer in use at refinery, chemical and petrochemical LDAR programs. The TVA uses a flame ionization detector (FID) and therefore requires hydrogen as a fuel source. The Eagle and COSMOS use solid state sensors and do not require any supply gases for operation. For this reason, operator/owners of natural gas production and processing facilities may find the Eagle or COSMOS analyzers more suitable for Method 21-compliant monitoring. While the COSMOS is the smallest and lightest of the three analyzers, it has an upper measurement range of 10,000 ppm while the Eagle will measure concentrations up to 50,000 ppm reliably. Although only the TVA requires hydrogen gas for operation of the FID, all three analyzers do require one or more calibration span gases to confirm their accuracy, precision, and linearity.

Remote Identification of Large Leaks – The TVA, Eagle and COSMOS are designed to perform component by component monitoring (also called "sniffing") while the RMLD and the IR Camera offer remote sensing for safe and quick detection of large leaks. A comparison of the RMLD and IR Camera indicates both can be effectively used to detect substantial leaks that might result in a significant loss of product or that might present an environmental or even safety issue. The RMLD is considerably cheaper than the IR Camera (\$20,000 for the RMLD vs. \$85,000 for the IR Camera) which may increase its attractiveness among smaller

owner/operators. An important distinction between the two instruments is that the IR Camera, by making an otherwise invisible leak visible to the human eye, enables precise identification of leaking components. The RMLD is limited to indicating the presence of a leak somewhere within the scanned area which will often include multiple components. The IR Camera is most effective when there is a small breeze or slight wind which causes the emission plume to move. In the absence of wind, it can be more difficult to detect an emission with the IR Camera. The RMLD on the other hand, operates independent of wind conditions and will reliably detect an emission provided there is a reflective background.

The Picarro Surveyor vs. the IR Camera – The comparison tests conducted at four gas well sites with the Picarro Surveyor and the IR Camera were revealing in both the capabilities and limitations of the Surveyor system. The Picarro Surveyor is fast – being able to complete three monitoring scans of the equipment at a natural gas well pad in approximately 10 minutes. It can also simultaneously detect multiple compounds, including CH₄ and CO₂ at ppb concentration levels.

However, the results from the Surveyor are subject to the following limitations:

- 1. The Surveyor's measurements are not made at the leak source but many feet downwind from it. The concentrations recorded by the Surveyor are therefore diluted and do not equal the leak concentration as would be determined by Method 21.
- 2. Unlike the IR Camera, the Surveyor is not able to pinpoint specific leaking components. In this one respect, the Surveyor is more like the RMLD. For example, at Site #4 (Figure 3-5), the Surveyor identified two leak areas, Area #2 and Area #3 in approximately 15 minutes. In about the same amount of time, the IR Camera operator was able to identify and photodocument four individual component leaks in Area #2 and three individual component leaks in Area #3.
- 3. In order to detect emissions, the Surveyor must be driven downwind of the leaking source. If this is not possible, as occurred three times during the four site tests, or if there is no wind, the Surveyor will be unable to effectively monitor all of the equipment.

While the Picarro Surveyor is a promising technology, its effectiveness in detecting GHG and VOC emissions from leaking equipment at natural gas facilities appears to be limited by the site's geography and local wind conditions. Additional questions remain regarding its cost and the required level of operator expertise.

SECTION 4 EMISSIONS FROM PNEUMATIC DEVICES

4.1 Introduction

Pneumatic devices such as liquid level and flow controllers are commonly used at oil and gas facilities throughout California. Their chief function is to regulate gas and liquid levels in dehydrators and separators, but they are also used to control temperatures in dehydrator regenerators and flash tank pressures. These devices can be powered by electricity or compressed air, however in the dry natural gas production sector, for practical as well as economic reasons, they are most often powered by compressed natural gas.

As part of their normal operation, pneumatic devices powered by compressed natural gas will release or bleed natural gas to the atmosphere with the actual bleed rate dependent on the design. For the purpose of this study, pneumatic devices can be divided into two groups:

- 1. High-Bleed Pneumatic Devices and
- 2. Low Bleed Pneumatic Devices.

Two pneumatic devices commonly used in California dry natural gas production fields are the Invalco Flex Tube® (Figure 4-1) and the Kimray® Level Controller (Figure 2). The Invalco Flex Tube® is a high-bleed device having a bleed rate > 0.1 kg/hr while the Kimray® Level Controller is a low-bleed device with a bleed rate < 0.1 kg/hr. At CARB's request, emissions testing using the Hi Flow Sampler was performed on a small number of both types during Phase III of the field work.

Figure 4-1 Invalco Flex Tube® CT Series Pneumatic Flow Controller

Figure 4-2 **Kimray® Pneumatic Flow Controller**

4.2 Results

Average emissions, measured as methane with the Hi Flow Sampler from ten Flex Tube® controllers were 0.2 kg/hour or 2.3 tons/year (11 SCFH). Average methane emissions from six Kimray® controllers were approximately an order of magnitude lower at 0.03 kg/hour or 0.3 tons/year (1.6 SCFH). These results are summarized in Table 4-1. Complete test results are provided in Appendix F.

Table 4-1 Mass Emissions Summary for Gas Field Pneumatic Devices

Tyma	Number of	Max E	mission	Min E	mission	Average Emission [1]		
Type	Components Tested kg/hr tons/year		kg/hr	tons/year	kg/hr	tons/year		
Flex Tube®	10	0.4	3.5	0.15	1.4	0.2	2.3	
Kimray®	6	0.09	0.8	0.004	0.04	0.03	0.3	

¹ Tons/year emission calculation assumes worst-case release for 8,760 hours/year

These same results are provided graphically in Figure 4-3, which clearly indicates the difference in emission rates between the two devices.

0.4 75th percentile Median 0.35 Mean 25th percentile 0.3 Leak Rate as CH4 (kg/hr) 0.25 0.2 0.15 0.1 0.05 Flex Tube® Kimray® N = 10N = 6

Figure 4-3 **Emissions Rates per Pneumatic Device Type**

Figure 4-3 plots the mean, median, quartiles, and range of emissions for the two types of pneumatic devices that were tested. The Flex Tube®, being a high-bleed device exhibits variable and high emission rates. The Kimray®, consistent with its design as a low-bleed device, shows much less variability and significantly lower emission rates.

This is a very small sample set which greatly limits statistical comparisons. However, this data appears to confirm that significant differences in emission rates exist between the two designs.

4.3 Emission Calculations

Emissions from the Flex Tube® and Kimray® pneumatic flow controllers, were measured by the Hi Flow Sampler as methane and were calculated according to the following equations:

1. The Hi Flow Sampler results are converted from percent concentration by volume to mg/m³ (1).

$$C = \frac{MW}{24.45} \times (Leak \% - Bkg \%) \times 10,000 \ ppmv/\%vol$$
 (1)

Where:

C = Concentration in mg/m³ MW = Molecular weight of analyte

24.45 = Molar volume in L/mol at 25°C (536.67°R) and 1 atm (29.92 inHg)

Leak % = Percent organics concentration by volume, of the leak, calibrated as CH₄

Bkg % = Percent concentration by volume of the background gas

10,000 = ppm in 1%.

2. The Hi Flow Sample gas flow rate is corrected to standard conditions (2).

$$CFM_{std} = (CFM_{act}) \left(\frac{T_{std}}{T_{act}}\right) \left(\frac{P_{act}}{P_{std}}\right)$$
 (2)

Where:

CFMstd = Standardized volumetric flow rate (ft3/min)

CFMact = Actual volumetric flow rate (ft3/min)

Tstd = Absolute gas temperature at standard conditions (298.15 K)

Tact = Absolute gas temperature at actual conditions (K)

Pact = Absolute barometric pressure at actual conditions (inHg) Pstd = Absolute gas pressure at standard conditions (29.92 inHg).

3. The emission rate of methane was calculated (3).

$$ER = C \times CFM_{std} \times \frac{CF}{2.205}$$
 (3)

Where:

ER = Emission rate (kg/hr)

C = Analyte concentration (mg/m^3)

 CFM_{std} = Standardized volumetric flow rate (ft³/min)

CF = Conversion factor = $3.75\text{E}-06 \left[(1 \text{ m}^3/35.32147 \text{ ft}^3) \times 60 \text{ min/hr} \times 10^{-3} \right]$

(1 lb/453592.37 mg)]

2.205 = Pounds per kilogram.

4. These three equations are combined to express the emission rate in kilograms/hour (4).

$$ER = \frac{MW}{24.45} \times (Leak \% - Bkg \%) \times 10,000 \frac{ppmv}{\%vol} \times (CFM_{act}) \left(\frac{T_{std}}{T_{act}}\right) \left(\frac{P_{act}}{P_{std}}\right) \times \frac{3.75E-06}{2.205} \quad (4)$$

5. The emission rate of methane in tons/year (tpy) is then calculated (5).

$$ER = C \times CFM_{std} \times \frac{CF \times 8,760}{2000}$$
 (5)

Where:

8,760 Hours per year 2,000 Pounds per ton.

SECTION 5 PROJECT QUALITY CONTROL

Project data quality was managed through the following quality control (QC) procedures:

- Hi Flow Sampler calibration verifications;
- TVA calibration verifications;
- Eagle and COSMOS calibration verifications;
- RMLD calibration verification;
- Test data documentation review;
- Sample documentation; and
- Analytical quality control.

5.1 Hi Flow Sampler Calibration and Calibration Verifications

Prior to the start of field testing, the background and leak detectors of Hi Flow Sampler #QX 1007 and #QX 1002 were calibrated with the following vendor-provided methane standards:

- 2.5% CH₄ in air (analytical tolerance +2%) and
- 99.0% CH₄.

Field calibration verifications of the Hi Flow Samplers were performed with the same two calibration standards. The acceptance criterion was a relative percent difference (RPD) less than 10%. Should a response of the Hi Flow Sampler to either calibration standard be equal to or greater than 10%, the Hi Flow Sampler would be re-calibrated.

Hi Flow Sampler #QX 1007 was used for emission testing throughout the first phase of testing and for most of Phase II. It began on February 25 to respond inaccurately to both calibration gases, however, and arrangements were made to have Hi Flow Sampler #QX 1002 shipped out to the project team as a replacement. In the interval, Hi Flow Sampler #QC 1007 continued to be used for emission testing on February 25 and February 26, but only for sample flow rate measurements. CH₄ concentrations on these days were determined by measuring the Hi Flow's exhaust stream with the TVA.

Beginning on February 27, Hi Flow Sampler #QX 1002 began to be used for emissions testing. By this time the 99% CH₄ calibration gas had become depleted so that only a single point calibration verification was possible using the 2.5% CH₄ standard. Since the instrument responded accurately to the low level calibration standard and since a calibration frequency of only once every thirty days is required by the manufacturer, Hi Flow Sampler #QX 1002 was judged to be in a state of control during the remaining three (3) days of testing. Both Hi Flow Samplers were returned to the manufacturer between Phase II and Phase III. The leak sensors of both were certified to be accurate within +5% and their sample flow rate measurements were

verified to be within specifications. Hi Flow Sampler #QX 1007 was used throughout Phase III field testing.

The results of the daily Hi Flow Sampler calibration verifications are provided in Table 5-1.

Table 5-1 Hi Flow Sampler Daily Calibration Verification Results

Timestamp	Background	Sensor Input	Leak Sen	sor Input
imestamp	2.5% CH4	99% CH4	2.5% CH4	99% CH4
Ph	ase I Hi Flow S	Sampler #QX 1	007	
1/20/2015 9:09	2. 6%	-	2.5%	
1/21/2015 8:25	2.5%	97.2%	2.5%	97.3%
1/22/2015 8:27	2.6%	97.0%	2.5%	97.5%
1/23/2015 9:02	2.6%	96.3%	2.5%	97.0%
1/26/2015 10:00	2.5%	95.0%	2.5%	97.0%
1/27/2015 8:30	2.5%	94.9%	2.5%	97.6%
1/28/2015 8:08	2.5%	96.6%	2.5%	98.0%
1/29/2015 8:02	2.5%	95.4%	2.5%	96.5%
1/30/2015 8:47	2.5%	96.0%	2.5%	98.0%
Ph	ase II Hi Flow	Sampler QX 1	007	
2/23/2015 9:30	2.6%	98.9%	2.7%	98.9%
2/24/2015 8:45	3.5%	98.0%	2.9%	97.0%
2/25/2015	Verification fa	iled. TVA used	l to measure (CH_4
2/26/2015	concentration	at Hi Flow Sai	mpler's exhau	ist port.
Ph	ase II Hi Flow		002	
2/27/2015 8:47	3.1%	NA^1	2.5%	NA ¹
3/2/2015 10:45	2.7%	NA^1	2.5%	NA ¹
3/3/2015 10:05	2.8%	NA^1	2.6%	NA ¹
Ph	ase III Hi Flow	Sampler QX 1	007	
8/6/2015 8:20	2.6%	99.1%	2.5%	97.7%
8/7/2015 8:09	2.6%	99.3%	2.6%	97.4%
8/11/2015 8:50	2.6%	99.0%	2.6%	97.4%
8/12/2015 8:17	2.6%	99.4%	2.6%	97.0%
8/13/2015 8:31	2.6%	99.2%	2.6%	97.4%
8/14/2015 8:00	2.6%	99.5%	2.6%	97.4%
8/17/2015 8:00	2.6%	99.6%	2.6%	97.7%
¹ Not Applicable – High Le	evel Calibration C	Gas not available	;	

5.2 **TVA Analyzer Calibration Verifications**

Two TVA 1000B analyzers (S/Ns #4048 and #5362) were used for the duration of the field testing. Calibration verification checks were performed on both instruments prior to use each day with a zero air gas, and low, mid, and high level methane-in-air span gases. The acceptance criterion was a Relative Percent Difference (RPD) <10% for any one of the span gases. Failure to meet this criterion would result in a recalibration of the instrument. The TVA calibration verification results are provided in Table 5-2.

Table 5-2 **TVA Calibration Verifications**

TVA C/NI	T:	Calibration Verification (ppm)							
TVA S/N	Timestamp	Zero	499	2028	10,000				
	P	hase I			-				
4048	1/20/2015 8:13	0.39	472	1,800	9,470				
5362	1/20/2015 8:20	0.88	472	2,208	9,800				
4048	1/20/2015 9:20	0.23	498	1,970	10,000				
5362	1/21/2015 8:41	0.23	505	1,972	10,200				
4048	1/21/2015 8:57	0.45	507	2,051	10,100				
4048	1/22/2015 8:51	0.25	494	2,015	10,000				
5362	1/22/2015 8:58	0.25	502	2,034	10,100				
5362	1/23/2015 8:11	0.07	508	2,037	10,200				
4048	1/23/2015 8:15	0.20	515	2,045	9,990				
4048	1/26/2015 10:23	0.20	508	2,079	10,700				
5362	1/26/2015 10:10	0.75	514	2,120	10,600				
4048	1/27/2015 8:30	0.30	512	2,028	10,200				
5362	1/27/2015 8:35	0.25	502	2,042	10,200				
4048	1/28/2015 8:11	0.24	508	1,955	10,000				
5362	1/28/2015 8:36	-0.03	511	2,043	10,600				
5362	1/29/2015 8:25	0.29	505	2,087	10,900				
4048	1/29/2015 8:38	0.07	521	1,907	9,400				
5362	1/30/2015 9:05	-0.04	528	2,012	10,000				
4048	1/30/2015 9:05	0.01	505	2,036	10,100				
TVA S/N	Timesakanan	Calibration Verification (ppm)							
IVA S/N	Timestamp	Zero	499	2028	10,000				
	Pi	hase II							
5362	2/23/2015 9:29	0.24	512	2,041	10,100				
4048	2/23/2015 9:34	0.22	538	2,052	10,300				
4048	2/24/2015 9:11	0.36	535	2,087	10,200				
5362	2/24/2015 9:16	0.36	510	1,997	10,000				
4048	2/25/2015 9:31	1.00	508	2,026	9,900				
5362	2/25/2015 9:47	1.20	517	2,017	10,000				
4048	2/26/2015 8:44	0.39	530	2,034	10,100				
5362	2/26/2015 8:50	0.12	521	2,022	10,000				
4048	2/27/2015 8:36	0.46	533	2,012	10,100				
5362	2/27/2015 8:40	0.60	515	2,028	10,200				
5362	3/02/2015 11:30	0.40	517	2,017	10,300				
4048	3/02/2015 11:40	1	490	2,044	10,100				
5362	3/03/2015 10:30	0.08	515	2,018	10,100				
4048	3/03/2015 14:17	0.70	509	1,977	9,900				
¹ Analyzer z	ero response not recorded								

Table 5-2 (Continued) TVA Calibration Verifications

TVA S/N	Timagtamn	Calibration Verification (ppm)							
IVA S/IN	Timestamp	Zero	498.7	1005	10,100				
	Ph	ase III							
4048	8/6/2015 8:19	0.10	489	990	10,000				
5362	8/6/2015 8:19	0.09	488	996	10,000				
4048	8/7/2015 8:20	-0.04	491	999	10,100				
5362	8/7/2015 8:20	-0.10	509	1,007	10,000				
4048	8/10/2015 8:45	-0.03	497	1,005	10,100				
5362	8/10/2015 8:45	-0.02	489	1,045	9,900				
4048	8/11/2015 8:45	0.04	497	1,016	10,100				
5362	8/11/2015 8:45	0.06	495	1,010	10,300				
4048	8/12/2015 8:15	0.01	495	1,011	10,100				
5362	8/12/2015 8:15	-0.10	500	1,016	10,200				
4048	8/13/2015 8:35	0.06	499	1,002	10,100				
5362	8/13/2015 8:35	0.03	502	1,001	10,200				
4048	8/14/2015 8:20	0.01	489	1,021	10,100				
5362	8/14/2015 8:20	-0.02	504	1,019	10,000				
4048	8/17/2015 8:20	-0.03	489	1,010	10,200				
5362	8/17/2015 8:20	-0.03	502	1,019	10,200				

5.3 **Eagle and COSMOS Calibration Verifications**

Evaluation tests of the RKI Eagle Model 1 and the COSMOS XP-3160 were conducted on January 25, 26, and 27, 2015. Calibration verifications were performed on each instrument prior to the evaluations. Table 5-3 and 5-4 record the instrument responses.

Table 5-3 Calibration Verification of the RKI Eagle Model 1

Date	Zero	500 ppm CH ₄	2,000 ppm CH ₄	10,100 ppm CH ₄
2/26/2015	0	1000	1,950	10,250
2/27/2015	0	870	1,890	10,200

Table 5-4 Calibration Verification of the COSMOS XP-3160

Date	Zero	500 ppm CH ₄	2,000 ppm CH ₄	10,100 ppm CH ₄					
2/25/2015	0^1	750	2,070	10,110					
2/26/2015	0^{1}	760	2,090	10,200					
2/27/2015	0^{1}	750	2,100	10,210					
¹ Ambient air used	¹ Ambient air used for zero gas.								

5.4 RMLD Calibration Verification

Evaluation testing of the RMLD was conducted on March 4, 2015. Prior to testing, the RMLD was calibrated according to the instructions provided in the User's Manual:

- 1. The instrument was turned on and allowed to warm up for two (2) to three (3) minutes;
- 2. The instrument Self-Test function was initiated and successfully completed; and
- 3. The calibration sweep of the laser frequency was initiated and after approximately 45 seconds the laser calibration was successfully passed.

5.5 Test Data Documentation Review

It was a routine practice, prior to leaving a test site, for one member of the project team to carefully review the site's completed data forms for completeness, accuracy, and legibility. Similarly, completed sample chain-of-custody forms and Sample Log Book entries were reviewed at the end of each test day prior to delivering samples for overnight shipment.

5.6 Sample Documentation

A project Sample Log Book was used to document the following information about each sample:

- Date of sample shipment to the laboratory for analysis;
- Sample Identification Number (a unique sequential number assigned to each sample);
- Site Identification;
- Date of sample collection;
- Time of sample collection;
- Initial vacuum (if an evacuated canister used);
- Final vacuum (if an evacuated canister used);
- Canister ID (if an evacuated canister used); and
- Comments pertaining to the sample.

Figure 5-1 provides an example page of the project Sample Log Book. Note that site locations have been removed in this example. Sample numbers beginning with the letters "CAN" indicate a canister sample. Sample numbers beginning with the letters "TB" indicate a sample collected in a Tedlar bag. A complete copy of the Sample Log Book is provided in Appendix G.

Figure 5-1 Sample Logbook

Sent Sample No.	Site	Date	Time	V;	Vf	CANID	Comments
Jan-22 TB 008		Jan-22	11:40	XA.	NA	NΑ	
Tan-23 CAN008		In-22	11:37	28	0	DEC-117-42	
Jan-22 78009		1 Jun-12		AN	ΛA	NA	
an-23 CANOO9		Jon-22	14:49	28.75	0	0EC-39-0296	
Jan -23 TB010		100000000000000000000000000000000000000	/0:52	NΑ	NA	[VA]	
In-23 (194/do		Jun-23	(0:48	28.5	0	DEC-29-70(
Jun-23 TB011.		Jun-23	12:04	NA	NA	NA	
Jan-23 CAW011		Jun-23	12:03	28.5	0	1EC-29-702	
Jan-23 TBOIA		Jan-23	12:19	NA	NA	NA.	
In-23 CANDIZ		Jm-23	12:17	29	0	DEC-9-716	
Jan-26 TB013		Jan-26	12:08	NA	NA	MA	
Jan-30 (AND13		Jan-26	12:06	27.5	0	080-17-11	
Ja-27 TB014 Jan-30 CANOI4		Jan-27		NA	NA	NA	
ta-30 CANOLY	***	Jan-27	12:41	28.5	0	0EC-39-0359	

Standard chain-of-custody procedures were followed to assure that sample data would not be invalidated due to failure to follow accepted procedures. These procedures included:

- Collected samples were securely maintained in the project team's possession up to the time of shipment;
- A chain-of-custody form was completed for each sample shipment clearly indicating each sample by its unique sample identification number and the analyses to be performed; and
- Before being turned over to the shipper, the chain-of-custody form was signed and dated by a project team member and a copy included with the packaged samples.

Figure 5-2 provides an example of a completed project sample chain-of-custody form.

Figure 5-2 Completed Project Sample Chain-of-Custody Form

Oilfield Environmental and Compliance 307 Roemer Way Suite 300, Santa Maria, CA 93454 Phone: (805) 922-4772 Fax: (805) 925-3376 www.oecusa.com							Adkisson ne: (661)			A 932	68		Page of		
Sage Environ	Sage Environmental Consulting, LP							Project Na	me/#: C	ARB #	1344				
4611 Bee Cave	s Road	Suite	100				ť	Site:							
Austin, Texas	78746						4		An	alysis	Requ	ested			Special Instructions
512 968-8906	Fax:		E-m	all: d	lavidr@s	ageenviron	mental.com	S	is ÷		T				
David Ranum		Sample	r. Dav	rid Ranu	m		1	Gas	Sase od L					1	
FAX-	PDF (std)	- 🗹					i	arb	len de						1
10 Days- 🗍 E: Samples receive		33 Sec.	3 Days-		_	150000000000000000000000000000000000000		3TU/Ca ge/Fixe phthal Gaso							
Date/Time Sampled	(see key)	# of Cont.		Clie	nt Sam	ple ID		Ran	O Z						
MAD-03	Α	1	TB	087	A		1	V							
MAR-03	Α	1	TB	037	В		V.		V	T					
MAR-63	Α	1	TB	0 33	A.	14	Y	~		T					
9	Α	1		2000			<u> </u>		~						
8	Α	1	TB	0 39	A		j	V		-					
9	Α	1	TR	039	B				1					8 .	
	A	1			-										
	A	1					4								
	A	1			18										
	A	1					1.6								
	A	1					7				1				
		1		79			1		1	+					7
Fed ex			Date Date	o: 3-4- o: 3-4-	15 15	Time:	1630	A = air / vap AQ = aqueor DW = drinkin F = filter GW = ground P = product / PW = product / S = solid / se SW = surfac	or us g water R d water roll st water ediment			8. Ex	cel		
	4611 Bee Caw Austin, Texas 512 968-8906 David Ranum FAX- 10 Days- E-samples receive Date/Time Sampled MAQ -03 MAR -03 MAR -03 MAR -03 MAR -03	4611 Bee Caves Road Austin, Texas 78746 512 968-8906 Fax: David Ranum FAX- PDF (std) 10 Days- D Days (st) E Samples received after 4-0 E Sampled (see key) MAQ-03 A MAR-03 A MAR-03 A MAR-03 A AAAAAAA A A A A A A A A A A A A A A	4611 Bee Caves Road Suite 1 Austin, Texas 78746 512 968-8906 Fax: David Ranum Sample FAX- PDF (std)- 1 10 Days 5 5 Days (std)- 1 10 Days 6 5 Days (std)- 2 11 Date/Time Sampled (see key) Cont. MAD -03 A 1 MAR-03 A 1 MAR-03 A 1 MAR-03 A 1 MAR-03 A 1 A 1 A 1 A 1 A 1 A 1 BIJEET MUKHER JE	4611 Bee Caves Road Suite 100 Austin, Texas 78746 512 968-8906 Fex: E-m David Ranum Sampler: Dav FAX. PPOF (std) ✓ Colt/LUFT ED 10 Days ◯ 5 Days (std) ✓ 3 Days □ Examples received after 4.0090 will be considered at Date/Time Reack of the Sampled Och MAD -03 A 1 TB MAR -03 A 1 TB Date	## Austin, Texas 78746 Sample David Ranum Sample David Ranum David Ranum Sample David Ranum David Ranum Sample David Ranum David	Austin, Texas 78746	Austin, Texas 78746 512 968-8906 Fax: E-mail: davidr@sageenviron David Ranum Sampler: David Ranum FAX. PDF (std) 2 Colut_UFT EDF EDD 10 Days 5 5 Days (std) 3 Days 2 Days 1 Day 10 Days 6 Date: 3 -7 - 5 Time: Date: Time: Date: 3 -7 - 5 Time: Date: 3 -4 - 5 Time: Date: Time: Date: 5 -4 - 5 Time: Date: 5 -4 - 5 Time: Date: 5 - 4 - 5 Time: Date: Time:	4611 Bee Caves Road Suite 100 Austin, Texas 78746 512 968-8906 Fax: E-malt davidr@sageenvironmental.com David Ranum Sampler: David Ranum FAX. PDF (std)	Austin, Texas 78746	Austin, Texas 78746	Austin, Texas 78746	Austin, Texas 78746 Site: Analysis Required	Austin, Texas 78746	Austin, Texas 78746	Act Dec Caves Road Suite 100 Austin, Texas 78746 Analysis Requested

5.7 TO-15 Analysis Quality Control

All samples were received and analyzed by Oilfield Environmental and Compliance (OEC). Two methods of analyses were performed: (1) EPA TO-15 for volatile organic compounds and (2) ASTM 1945/3588, the Standard Test Method for Analysis of Natural Gas by Gas Chromatography.

For the samples analyzed by EPA TO-15 five (5) quality control analyses were performed:

- 1. Method Blanks;
- 2. Laboratory Control Spikes (LCS);
- 3. Laboratory Control Spike Duplicates (LCSD);
- 4. Duplicate analyses; and
- 5. Matrix Spike Recovery.

<u>The Method Blank</u> -- The method blank is an ambient air sample used to determine if there is any laboratory contamination. The detection of any analyte that is a target analyte above the laboratory's reporting limit could indicate that there is a laboratory contaminant that may bias any detection of that analyte in the samples. The Blank is put through the same preparation process as the regular samples.

<u>Laboratory Control Spike (LCS)</u> – The LCS is a known matrix spiked with compound(s) representative of the target analytes. It is run regularly with each sample batch and is used to show that sample preparation procedures do not contribute to loss of analytes.

<u>Laboratory Control Duplicate (LCD)</u> – The LCD is a duplicate analysis of the laboratory control spike. The results are reported as a relative percent difference (RPD). Any results outside the control limits are flagged by the laboratory.

Duplicate Analyses – As the name implies, this is a repeated analysis of the same sample.

Matrix Spike Recovery – A matrix spike recovery checks to see if anything in the sample (i.e. the matrix) is interfering with the test for a particular contaminant. To check for possible matrix interference a known amount of the same compound being tested for is added to a sample before the analysis. A recovery between 70-120% is an indication that the matrix is not interfering with the test.

A summary of the quality control results for the TO-15 analyses is provided in Table 5-5.

Table 5-5 QC Results for TO-15 Analyses

	Phase I January 20 – 30, 2015										
QC	Number	Result	Comment								
Blanks	3	No target analytes detected									
Laboratory Control Spike % REC1	3	#B5A0773-BS1: TCE % REC = 125%	The spike recovery is outside the inhouse generated control limits but within the 70-130 percent recovery range.								
Laboratory Control Spike Duplicate % REC	3	All recoveries within %REC limits									
Duplicate RPD2	3	All results within RPD limits									
Matrix Spike % REC	0										
		Phase II February 23 – March 3, 2015									
QC	Number	Result	Comment								
Blanks	5	No target analytes detected									
Laboratory Control Spike % REC1	5	All recoveries within %REC limits									
Laboratory Control Spike Duplicate % REC	5	All recoveries within %REC limits									
Duplicate RPD2	3	All results within RPD limits									
Matrix Spike % REC	1	All recoveries within %REC limits									

Table 5-5 (Continued) QC Results for TO-15 Analyses

		Phase III August 6 – 14, 2015	
QC	Number	Result	Comment
Blanks	5	#B5H0387: The CCV ³ for t-Butyl alcohol failed low.	t-Butyl alcohol was not detected in any of the project samples.
Laboratory Control Spike % REC1	5	#B5H0387-BS1: % RECs for Diisopropyl Ether (80%), ethyl t-Butyl Ether (80%), t-Amyl Methyl Ether (80%), t-Butyl alcohol (69%), & 1, 1, 1-Trichloromethane (91%) were slightly below analytical control limits.	These analytes were not detected in any of the project samples.
Laboratory Control Spike Duplicate % REC	5	#B5H0387-BSD1: % RECs for Diisopropyl Ether (79%), Ethyl t-Butyl Ether (81%), t-Amyl Methyl Ether (80%), t-Butyl alcohol (70%), 1, 1, 1 Trichloroethane (91%) & Trichlorofluoromethane (90%) were slightly below analytical control limits.	These analytes were not detected in any of the project samples
Duplicate RPD2	5	B5H0369-DUP1 – The RPDs for ethylbenzene (31%) and total Xylenes (30%) exceeded the 25% Control Limit. B5H0387-DUP1 – The CCV for t-Butyl alcohol failed low.	The LCS & LCS DUP % REC s results for ethylbenzene and total Xylenes suggest that their reported results are accurate. t-Butyl alcohol was not detected in any of the project samples.
Matrix Spike % REC	1	All recoveries within %REC limits	

¹ % REC = Percent Recovery

5.8 ASTM 1945/3588 Analysis Quality Control

Quality control for the samples analyzed by ASTM 1945/3588 was limited to the running of calibration standards to ensure that the analytical instrumentation was operating within required specifications. ASTM methods are not regulated in the way that EPA methods are and therefore, less stringent QC requirements are required.

² RPD = Relative Percent Difference

³ CCV = Continuing Calibration Verification

California Air Resources Board

Air Resources Board IFB No. 13-414: Enhanced Inspection & Maintenance for GHG & VOCs at **Upstream Facilities – Final (Revised)**

APPENDICES

Appendix A - Field & Lab Data Results & Calculations

Appendix B - Correlation Plots of Mass Emission Rates vs. Leaking Equipment Concentrations

Appendix C - Example Calculations of Mean Square Error and Scale Bias Correction

Appendix D - Notes to Updated Calculations 08/20/2019

Appendix E - Average Emission Rates for Components in Liquid Service

Appendix F - Pneumatic Device Test Results

Appendix A:

Field and Lab Data Results and Calculations

Note: results with all values = zero are hidden, see

Appendix E for Descri	ptive Statistics for all leak	(
	Component Information	tion Site Characterization							METEOROLOGY	/ :			METEOROLOGY
Sort order, sorted by												4	
Component Type, &													
	C	C							MIND	WIND	AMBIENT		BAROMETRIC
Method 21	Component Type	Service							WIND			1	
Concentration, ppmv			EQUIPMENT/ACTIVITY DESCRIPTION	DATE	REGULATORY IDs	#WELLS	FACILITY TYPE: (OIL/GAS)	THROUGHPUT(s)	DIRECTION	SPEED	TEMPERATURE	% RH	PRESSURE
									FROM	(mph)	(F)	/	(inHg)
A. Components in Ga	s Service with TVA, HiFlov	w. TO-15 &											
1	Connector	Gas	Natural Gas Well Site	6-Aug-15		1	Gas	0 SCFM	W	5.2	88.5	52.7	29.73
2	Connector	Gas	Gas Wells		SEC.33 T-20N R-2W	2	Gas	2098.5MCF/DAY	N	3	57.1	64	29.67
3	Connector	Gas	Gas Wells		SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	1.3	46	50	29.93
4	Connector	Gas	Oil Production Facility	23-Jan-15		12	Oil	87 bbls/day Oil, 400-500 bbls/day Water	SSE	2.1	65.5	36.9	30.17
5	Connector	Gas	Oil Water Gas Separation	_	LAFD #2990	5	Oil	44 bb/day oil, 51 bb/day water	ESE	4.5	57.2	70.5	29.9
6	Connector	Gas	Oil Production Facility	23-Jan-15		12	Oil	87 bbls/day Oil, 400-500 bbls/day Water	SSE	2.1	65.5	36.9	30.17
7	Connector	Gas	,	_	TITLE V 041	0		87 DDIS/day OII, 400-500 DDIS/day Water	WSW	4	81.3	34.5	29.5
8	Connector	Gas	Water separation			5	Gas Oil	44 bb /dec ell 54 bb /deccesses	ESE	4.5	57.2	70.5	29.9
9		_	Oil Water Gas Separation		LAFD #2990		Oil	44 bb/day oil, 51 bb/day water			64.4	76.4	29.85
	Connector	Gas	Oil Well with flare	_	Not Listed	1	<u> </u>	5 bbls/day oil; 80 bbls/day water	WNW	3.8	_	_	
10	Connector	Gas	Water separation		TITLE V 041	0	Gas		WSW	4	81.3	34.5	29.5
11	Connector	Gas	Water separation		TITLE V 041	0	Gas	440 04405 /DAV	WSW	4	81.3	34.5	29.5
12	Connector	Gas	Gas Wells		SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	1.3	46	50	29.93
13	Connector	Gas	Water separation		TITLE V 041	0	Gas		WSW	1.5			29.6
14	Connector	Gas	NG Compressor & Transmission		TITLE V 041	0	NG	4063 mcf/day	East	3	79.8	21.9	29.37
15	Connector	Gas	Water separation	_	TITLE V 041	0	Gas		WSW	4	81.3	34.5	29.5
16	Connector	Gas	Gas Wells		SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	1.3	46	50	29.93
17	Connector	Gas	Water separation	28-Jan-15	TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
18	Connector	Gas	Oil Well with flare	20-Jan-15	Not Listed	1	Oil	5 bbls/day oil; 80 bbls/day water	WNW	3.8	64.4	76.4	29.85
19	Connector	Gas	NG Compressor & Transmission	26-Jan-15	TITLE V 041	0	NG	4063 mcf/day	East	3	79.8	21.9	29.37
20	Connector	Gas	Water separation	28-Jan-15	TITLE V 041	0	Gas	, ,	WSW	1.5	-	-	29.6
21	Connector	Gas	Water separation	29-Jan-15	TITLE V 041	0	Gas		WSW	4	81.3	34.5	29.5
22	Connector	Gas	Natural Gas Well	7-Aug-15		3 + 1 inactive	Gas	19-10: 17.8 MCF/24-1: 18.8 MCF/19.8: 142.4 MCF	E	7	73.4	56.1	29.74
23	Connector	Gas	Gas Wells		SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
24	Connector	GAS	Natural Gas Well	14-Aug-15		1	Gas	62.5 MCF/D	W	5.7	72.1	52.2	29.97
25	Connector	Gas	NG Compressor & Transmission		TITLE V 041	0	NG	4063 mcf/day	East	3	79.8	21.9	29.37
26	Connector	Gas	Water separation	_	TITLE V 041	0	Gas	4005 Mel/ddy	WSW	1.3	77.8	47.9	29.68
27	Connector	Gas	Gas Wells		SEC.33 T-20N R-2W	2	Gas	2098.5MCF/DAY	N	3	57.1	64	29.67
28	Connector	Gas	NG Compressor & Transmission		TITLE V 041	0	NG	4063 mcf/day	East	3	79.8	21.9	
29	Connector	Gas	Oil	22-Jan-15		10	Oil	150 bbls/day Oil, 1000 bbls/day Water	ESE	1.7	76.3	41.8	30.14
30	Connector	Gas	Water separation		TITLE V 041	0	Gas	130 bbis/day Oii, 1000 bbis/day Water	WSW	1.7	70.5	41.0	29.6
		_				0						-	
31	Connector	Gas	Water separation		TITLE V 041	0	Gas		WSW	1.5	-	+	29.6 29.6
32	Connector	Gas	Water separation	_	TITLE V 041		Gas	5111 /1 31 00111 /1	WSW	1.5		76.4	
33	Connector	Gas	Oil Well with flare		Not Listed	1	Oil	5 bbls/day oil; 80 bbls/day water	WNW	3.8	64.4	76.4	29.85
34	Connector	Gas	Natural Gas Well with lift compressor and glycol dehydrator	_	SEC.9 T-19N R-2W	1	Gas	88.1 MCF/DAY	NNW	15.9	52.5	23.1	29.98
35	Connector	Gas	Water separation	_	TITLE V 041	0	Gas		WSW	4	81.3	34.5	29.5
36	Connector	Gas	Oil Water Gas Separation	_	LAFD #2990	5	Oil	44 bb/day oil, 51 bb/day water	ESE	4.5	57.2	70.5	29.9
37	Connector	Gas	Natural Gas Well	12-Aug-15		1	Gas	192.3 MCF/D	SW	3.9	83	44.6	29.96
38	Flange	Gas	Compressors, Pumps, Valves, Connectors, Glycol, Tank		CAL000381898	27	Oil & Gas	65 bbls/day Oil + 2000 bbls/day Water	SSW	1.3	66.6	73	29.95
39	Flange	Gas	Testing/Group Gathering Facility, Automatic Well Testing		TITLE V 041	0	Gas		SW	4.2	77.8	27.6	29.63
40	Flange	Gas	Testing/Group Gathering Facility, Automatic Well Testing	26-Jan-15	TITLE V 041	0	Gas		SW	4.2	77.8	27.6	29.63
41	Flange	Gas	Gas Wells	25-Feb-15	SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	3	60	31	30.14
42	Flange	Gas	Gas Wells		SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	1.3	46	50	29.93
43	Flange	Gas	Gas Wells	24-Feb-15	SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
44	Flange	Gas	Natural Gas Well with lift compressor and glycol dehydrator	23-Feb-15	SEC.9 T-19N R-2W	1	Gas	88.1 MCF/DAY	NNW	15.9	52.5	23.1	29.98
45	Flange	Gas	Gas Wells		SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
46	Flange	Gas	Water separation		TITLE V 041	0	Gas	·	WSW	1.3	77.8	47.9	29.68
47	Flange	Gas	Natural Gas Well with lift compressor and glycol dehydrator		SEC.9 T-19N R-2W	1	Gas	88.1 MCF/DAY	NNW	15.9	52.5	23.1	29.98
48	Flange	Gas	Water separation		TITLE V 041	0	Gas		WSW	1.3	77.8	47.9	29.68
49	Flange	Gas	Natural Gas Well	11-Aug-15		1	Gas	612.5 MCF/D	W	3.4	88	48.7	29.77
50	Flange	Gas	Natural Gas Well	11-Aug-15		1	Gas	612.5 MCF/D	W	3.4	88	48.7	29.77
51	Flange	Gas	Natural Gas Well	14-Aug-15		1	Gas	38.1 MCF/D	SE	2.4	81	49.6	29.97
	Halige	Gas	Hatarar Gas WCII	14-Aug-15	'I	1 1	Jas	30.1 IVICI / D	JL	2.4	01	45.0	43.31

Note: results with all values = zero are hidden, see

Y [2] = Y, Avanti Y [3] = Y, Operator run with Eagle Y [4] = Y, Operator run with Eagle quarterly Y [5] = Y, Quarterly, Summit

Appendix E for Descriptive Statistics for all leak					61. 61			[5] = Y, Quarterly, Summit		In access :		EDA SA IL 1015		To a	1011 FLOW 6:	
Component Informa					Site Characterization				Component Information	IR CAMERA		EPA Method 21 Results		Н	IGH FLOW SAMPLER DAT	
ort order, sorted by																
Component Type, &																
	Commonant Tuna	Camilaa		WEATHER COURSE							Me	hod 21				
Method 21	Component Type	Service		WEATHER (sunny,						_		_	l	eak		
oncentration, ppmv			% CLOUD COVER	,, , ,	# SEPARATORS	# TANKS	# COMPRESSORS	DOES SITE HAVE LDAR PLAN? (Y/N)	Description	Date	Time	Date	Time	ntration,	Date	
				light rain, heavy rain)										pmv		
Components in Gas	Service with TVA, HiFlow	TO-15 8	2.										-	DIIIV		
1	Connector	Gas	85	Cloudy	2	1	1	N	1-inch Plug	+		6-Aug-15	10:35	4.00	6-Aug-15	
2					-		2	N N	Ü	+						
	Connector	Gas	20	Sunny	1	2			3/8" Threaded			Feb-27-2015	10:37	10.00	Feb-27-2015	
3	Connector	Gas	10	sunny	4	7	2	N	kwik connect on a simple bomb	-	-	Feb-26-2015	14:36	16.00	Feb-26-2015	
4	Connector	Gas	0	Sunny	1	3	2	Y [2]	Tubing Connector	-	-	Jan-23-2015	11:05	37.00	Jan-23-2015	
5	Connector	Gas	100	cloudy	0	3	2	Υ	Plug	-	-	Jan-20-2015	9:51	50.00	Jan-20-2015	
6	Connector	Gas	0	Sunny	1	3	2	Y [2]	Cap	-	-	Jan-23-2015	10:43	61.00	Jan-23-2015	
7	Connector	Gas	50	light cloudy				Y [3]	2" Threaded Connector	-	-	Jan-29-2015	13:57	135.00	Jan-29-2015	
8	Connector	Gas	100	cloudy	0	3	2	Υ	Сар	-	-	Jan-20-2015	9:59	200.00	Jan-20-2015	
9	Connector	Gas	100	cloudy	4	0	1	Υ	Gas Compressor connector	-	-	Jan-20-2015	14:10	300.00	Jan-20-2015	
10	Connector	Gas	50	light cloudy			İ	Y [3]	Plug on a valve attached to a flow meter	_	-	Jan-29-2015	11:08	505.00	Jan-29-2015	
11	Connector	Gas	50	light cloudy				Y [3]	1" threaded connector at a pressure transmitter	_	_	Jan-29-2015	11:16	673.00	Jan-29-2015	
12	Connector	Gas	10	sunny	4	7	2	т [э] N	at wellhead 60-19	-		Feb-26-2015	13:53	700.00	Feb-26-2015	
13			90		4					-		Jan-28-2015	13:53	800.00	Jan-28-2015	
13 14	Connector	Gas	90	cloudy	0	1	2	Y [3]	1" Plug			Jan-28-2015 Jan-26-2015	13:45	994.00	Jan-28-2015 Jan-26-2015	
	Connector	Gas		Cloudy	U	1	2	Y [1]	2"elbow	-	-					
15	Connector	Gas	50	light cloudy				Y [3]	1" elbow connector at bottom of pressure transmitter	-	-	Jan-29-2015	12:41	1,100.00	Jan-29-2015	
16	Connector	Gas	10	sunny	4	7	2	N	Threaded 3" on V4016E at compressor	-	-	Feb-26-2015	9:07	1,770.00	Feb-26-2015	
17	Connector	Gas	90	cloudy				Y [3]	Swage Connector on K1400	Jan-28-2015	10:24	Jan-29-2015	14:08	2,000.00	Jan-29-2015	
18	Connector	Gas	100	cloudy	4	0	1	Υ	Bottom of Level Gauge	-	-	Jan-20-2015	14:25	2,200.00	Jan-20-2015	
19	Connector	Gas	95	Cloudy	0	1	2	Y [1]	on the top of Sightglass	-	-	Jan-26-2015	11:40	2,400.00	Jan-26-2015	
20	Connector	Gas	90	cloudy				Y [3]	1" Plug	_	-	Jan-28-2015	13:31	2,600.00	Jan-28-2015	
21	Connector	Gas	50	light cloudy				Y [3]	Plug on compressor	_	-	Jan-29-2015		4,600.00	Jan-29-2015	
22	Connector	Gas	80	Cloudy/overcast	1	5	1	, [e]	Swagelok 3/8"			7-Aug-15		7,700.00	7-Aug-15	
23	Connector	Gas	0	sunny	4	5	1	N N	1" plug on line 60-1A	_	-	Feb-24-2015		7,800.00	Feb-24-2015	
24	Connector	GAS	0	Sunny	1	2	1	N N	1/4-INCH SWAGELOK ON KIMRAY	<u> </u>		14-Aug-15		2,400.00	14-Aug-15	
		_				1	2	· ·		+						
25	Connector	Gas	95	Cloudy	0	1	2	Y [1]	Qwik disconnect		-	Jan-26-2015		6,000.00	Jan-26-2015	
26	Connector	Gas	10 / 90 / 50/ 98	sunny				Y [3]	1" union connector on Pressure Gauge H-601A	Jan-27-2015	9:17	Jan-27-2015		6,000.00	Jan-27-2015	
27	Connector	Gas	20	Sunny	1	2	2	N	1" Elbow on Compressor by V5530G			Feb-27-2015		0,000.00	Feb-27-2015	
28	Connector	Gas	95	Cloudy	0	1	2	Y [1]	at Sightglass bottom	-	-	Jan-26-2015		6,000.00	Jan-26-2015	
29	Connector	Gas	50	Sunny	15	5	4	Y [2]	Compressor Crankcase Plug by LDAR Tag #7010110	Jan-22-2015	9:37	Jan-22-2015	11:32	0,000.00	Jan-22-2015	
30	Connector	Gas	90	cloudy				Y [3]	1/2" Threaded Connector	Jan-28-2015	10:07	Jan-29-2015	12:28 10	4,501.00	Jan-29-2015	
31	Connector	Gas	90	cloudy				Y [3]	Assorted Compressor Fittings	Jan-28-2015	10:44	Jan-29-2015	13:51 10	4,501.00	Jan-29-2015	
32	Connector	Gas	90	cloudy				Y [3]	Tubing Connector	Jan-28-2015	10:38	Jan-29-2015	13:44 10	4,501.00	Jan-29-2015	
33	Connector	Gas	100	cloudy	4	0	1	Y	on a pressure Gauge	_	_	Jan-20-2015		8,960.00	Jan-20-2015	
34	Connector	Gas	10	sunny	1	1	2	N	3" Threaded Connector	_	-	Feb-23-2015		0,001.00	Feb-23-2015	
35	Connector	Gas	50	light cloudy	-	† <u> </u>		Y [3]	Threaded Connector	Jan-29-2015	9:52	Jan-29-2015		0.000.00	Jan-29-2015	
36	Connector	Gas	100	cloudy	0	3	2	Y	Compressor Plug	Jan-20-2015	J.J2 -	Jan-20-2015		4,000.00	Jan-20-2015	
37				, , , , , , , , , , , , , , , , , , ,	1	1	1	N N		Jd11-2U-2U15				8.000.00		
_	Connector	Gas	0	Sunny	-				Plug on top of wellhead			12-Aug-15		-,	12-Aug-15	
38	Flange	Gas	2.3	Sunny	3	11	2	Y [2]	on Compressor No.350	-	-	Jan-21-2015	12:35	0.06	Jan-21-2015	
39	Flange	Gas	100	Cloudy	0	0	1	Y [1]	Δ"	-	-	Jan-26-2015	14:38	1.31	Jan-26-2015	
40	Flange	Gas	100	Cloudy	0	0	1	Y [1]	2"	=	-	Jan-26-2015	14:20	1.77	Jan-26-2015	
41	Flange	Gas	70	Cloudy	4	7	2	N	4" on V10749	-	-	Feb-25-2015	13:18	15.00	Feb-25-2015	
42	Flange	Gas	10	sunny	4	7	2	N	on compressor	-		Feb-26-2015	9:38	40.00	Feb-26-2015	
43	Flange	Gas	0	sunny	4	5	1	N	at compressor	-	-	Feb-24-2015	13:20	40.00	Feb-24-2015	
44	Flange	Gas	10	sunny	1	1	2	N	4" flange on compressor	-	-	Feb-23-2015	12:30	49.00	Feb-23-2015	
45	Flange	Gas	0	sunny	4	5	1	N	at compressor	-	-	Feb-24-2015	13:38	111.00	Feb-24-2015	
46	Flange	Gas	10 / 90 / 50/ 98	sunny		T -	1	Y [3]	2"	_	_	Jan-27-2015	14:55	300.00	Jan-27-2015	
47	Flange	Gas	10%	sunny	1	1	2	N	3" at compression	_	_	Feb-23-2015	10:56	349.00	Feb-23-2015	
48	Flange	Gas	10 / 90 / 50/ 98	sunny	1			Y [3]	2"	-	-	Jan-27-2015	14:42	358.00	Jan-27-2015	
					1	2	1		24 inch on compressor @ and of -i-t							
49	Flange	Gas	10	Sunny	•		-	N N	24-inch on compressor @ end of piston			12-Aug-15	10:35	500.00	12-Aug-15	
50	Flange	Gas	10	Sunny	1	2	1	N	12-inch on compressor			12-Aug-15	10:32	700.00	12-Aug-15	
51	Flange	Gas	0	Sunny	1	1	1	N	12-inch on compressor			14-Aug-15	12:24	1,100.00	14-Aug-15	

Note: results with all values = zero are hidden, see

Appendix E for Descrip	tive Statistics for all leak																				
	Component Information																				HIGH FLOW SAMPLER DATA
Cout and an acuted by				Flow #1					Flow #2						Average						CALCULATED
Sort order, sorted by																					
Component Type, &																					
Method 21	Component Type	Service		Temperature					Temperature				Is the %CH4 a								Calculated CH4 Emissions
Concentration, ppmv			Time	(Degree C)	Flow CFM	Bkg %	%CH4 (%)	% CFM	(Degree C)	Flow CFM	Bkg %	%CH4	TVA reading?	% CFM	Temperature (°C)	Temperature (°R)	Flow CF	FM Bkg %	%CH4	% CFM	Rate, kg/hr, STP, as methane
				(208.000)					(208.000)				· · · · · · · · · · · · · · · · · · ·								mate, ng, m, ett , as memane
A. Components in Gas	Service with TVA, HiFlow	. TO-15 &																			
1	Connector	Gas	10:35	28.1	5.7	0	0.0004	0.00002	28.4	6.0	0	0.0004		0.00002	28.25	542.52	5.850	n -	0.000400	0.000023	2.64E-05
2	Connector	Gas	10:37	25.5	7.4	0	0.000248	0.00002	25.5	6.2	0	0.0007	Υ	0.00004	25.50	537.57	6.800		0.0007	0.00004	5.36E-05
3	Connector	Gas	14:36	27.6	7.4	-	0.000248	0.00002	27.7	6.0	Ŭ	0.000157	Y	0.00001	27.65	541.44	6.500		0.000157	0.00001	1.16E-05
4	Connector	Gas	11:05	20.9	5.3	0	0.00045	0.00000	21.00	4.9	0	0.00045	Y	0.00000	20.95	529.38	5.100		0.00045	0	2.63E-05
5	Connector	Gas	11:00	18.2	7.9	0:00	0.0094	0.00000	18.3	6.5	0	0.0094	Y	0.00000	18.25	524.52	7.200		0.0094	0.000	7.68E-04
6	Connector	Gas	10:43	19.8	6.2	0.00	0.0071	0.00000	19.80	6.0	0	0.0071	Y	0.00000	19.80	527.31	6.100		0.0071	0.000	4.96E-04
7	Connector	Gas	13:57	28.8	7.2	0	0.0312	0.00000	28.80	5.9	0	0.0312	Y Y	0.00000	28.80	543.51	6.550		0.0312	0	2.29E-03
8	Connector	Gas	11:11	18.8	7.7	0:00	0.0312	0.00000	18.90	6.4	0	0.0312	, V	0.00000	18.85	525.60	7.050		0.0487	0.000	3.89E-03
9	Connector	Gas	14:49	19.8	5.2	0.00	0.0037	0.00000	19.90	3.1	0	0.0037	Y	0.00000	19.85	527.40	4.150		0.0037	0.000	1.74E-04
10	Connector	Gas	11:08	21.7	4.9	0	0.0037	0.00000	21.80	4.1	0	0.0037	Y	0.00000	21.75	530.82	4.500		0.0037	0.000	3.02E-05
11	Connector	Gas	11:16	22.2	3.8	0	0.00068	0.00000	22.30	3.3	0	0.00068	Y	0.00000	22.25	531.72	3.550		0.00068	0	2.70E-05
12	Connector	Gas	13:53	24.6	7.3	J	0.000842	0.00006	24.8	6.2	- 0	0.001066	Y	0.00007	24.70	536.13	6.750		0.001066	0.00007	8.17E-05
13	Connector	Gas	13:45	24.6	5.4	0	0.000842	0.00000	24.00	4.5	0	0.001066	Y	0.00007	24.70	534.87	4.950	_	0.001066	0.00007	6.89E-05
14	Connector	Gas	11:47	28.3	4.5	0:00	0.00124	0.00000	28.40	3.2	0	0.00124	Y	0.00000	28.35	542.70	3.850		0.00124	0	6.86E-05
15	Connector	Gas	12:41	23.6	4.7	0.00	0.0010	0.00000	23.60	4.0	0	0.0010	Y	0.00000	23.60	534.15	4.350		0.0010	0	1.02E-04
16	Connector	Gas	9:07	15.2	8.5	U	0.00209	0.00007	15.3	7.0	U	0.00209	Y	0.00018	15.25	519.12	7.750		0.00209	0.00018	2,29E-04
17	Connector	Gas	14:08	29	7.9	0	0.0693	0.00017	29.00		0	0.0693	Y	0.000018	29.00	543.87	7.750			0.00018	5.64E-03
18	Connector	Gas	14:55	19.9	3.3	0	0.0093	0.00000	20.00	6.6 4.8	0	0.0093	Y	0.00000	19.95	527.58	4.050		0.0693 0.0100	0.000	4.59E-04
19	Connector	Gas	11:37	27.8	6.4	0	0.01	0.00000	27.80	5.9	0	0.01	Y	0.00000	27.80	541.71	6.150		0.0100	0.000	1.37E-03
20	Connector	Gas	13:30	24.4	3.1	0	0.027	0.00000	24.40	4.2	0	0.027	Y	0.00000	24.40	535.59	3.650		0.027	0	1.37E-03
21	Connector	Gas	13:30	26.6	5.7	0	0.0027	0.00000	26.70	4.2	0	0.0027	Y	0.00000	26.65	539.64	5.150		0.0027	0	5.24E-04
22	Connector	Gas	10:27	33	6.6	0	0.0091	0.00000	33.1	6.3	0	0.0091	ı	0.00000	33.05	551.16	6.450		0.0091	0.00097	1.09E-03
23	Connector	Gas	10:27	18.7	7.9	0	0.004307	0.00092	18.7	6.5	0	0.0052	Y	0.00101	18.70	525.33	7.200		0.0052	0.00097	4.29E-04
24	Connector	GAS	9:24	26.6	7.9	0	0.004307	0.00034	26.8	3.5	0	0.0052	Y	0.00034	26.70	539.73	5.250		0.0052	0.00525	6,27E-03
25		Gas	12:20	30	6.6		0.00485	0.00420	30.00	5.4	0	0.00485	Υ	0.00323	30.00	545.67	6.000		0.103	0.00323	3.24E-04
26	Connector Connector	Gas	12:53	27.1	6.9	0	0.00485	0.00000	27.00	5.6	0	0.00485	Y	0.00000	27.05	540.36	6.250		0.0365	0	2.57E-03
27	Connector	Gas	9:33	22.8	7.4	0	1.18	0.00000	23.1	6.3	0	1.35	ı	0.00000	22.95	532.98	6.850		1.35	0.08700	1.04E-01
28	Connector	Gas	11:33	27.4	6	0:00	0.049	0.00000	27.40	5.4	0	0.049	Υ	0.00000	27.40	540.99	5.700		0.049	0.08700	3.11E-03
29	Connector	Gas	11:32	27.9	7.2	0.00	0.049	0.00000	27.40	6.0	0	0.049	ı	0.00000	27.85	541.80	7.200		0.049	0.01500	1.81E-02
30	Connector	Gas	12:28	22.9	4.5	0	0.21	0.01300	22.9	3.6	0	0.22		0.01300	22.90	532.89	4.050		0.22	0.01300	1.18E-02
31	Connector	Gas	13:51	28.5	7.2	0	0.22	0.01000	28.5	5.9	0	0.5		0.01100	28.50	542.97	6.550		0.455	0.03000	3.35E-02
32	Connector	Gas	13:44	28.1	4.6	0	2.01	0.03000	28.1	4.4	0	2.09		0.03000	28.10	542.25	4.500		2.05	0.09200	1.04E-01
33	Connector	Gas	15:07	19.9	3.8	0	0.36	0.09200	19.9	3.5	0	0.32		0.03200	19.90	527.49	3.800		0.36	0.03200	1.55E-02
34	Connector	Gas	11:49	18.5	8	0	0.36	0.01400	18.4	6.7	0	0.32		0.01100	18.45	527.49	7.350		0.36	0.01400	6.60E-02
35	Connector	Gas	10:57	20.9	3.7	0	0.1356	0.00000	21.00	3.7	0	0.1356	Y	0.00000	20.95	529.38	3.700		0.1356	0.03400	5.61E-03
36	Connector	Gas	11:06	18.5	7.8	0	0.1356	0.03000	18.5	6.4	0	0.1336	ī	0.00000	18.50	529.38	7.100	_	0.1356	0.03050	3.50E-02
37	Connector	Gas	11:03	30.9	7.8	0	1.23	0.03000	31	5.8	0	1.4		0.03100	30.95	547.38	6.500		1.315	0.09000	9.71E-02
38	Flange	Gas	12:35	23.6	6.7	0	0.46	0.09000	23.5	5.8	0	0.65		0.08120	23.55	534.06	6.700		0.65	0.03800	4.95E-02
39	Flange	Gas	14:38	26.9	6.1	0	0.000149	0.00000	26.90	5.4	0	0.000149	Y	0.00000	26.90	540.09	5.750		0.000149	0.03800	9.63E-06
40	Flange	Gas	14:30	27.1	6.5	0	0.000149	0.00000	27.10	5.3	0	0.000149	Y	0.00000	27.10	540.09	5.900		0.000149	0	1.06E-05
40	Flange	Gas	13:18	25.7	8.2	U	0.00016	0.00000	25.6	6.8	U	0.00016	Y	0.00005	25.65	537.84	7.500		0.00016	0.00005	6.00E-05
42	Flange	Gas	9:38	18.2	6.8		0.00039	0.00000	18.3	5.6		0.0007	Y	0.00003	18.25	524.52	6.200		0.0007	0.00003	3.24E-05
42	Flange	Gas	13:20	25.1	8.2	0	0.00039	0.00005	25.2	6.6	0	0.00046	Y	0.00060	25.15	536.94	7.400		0.00046	0.00060	7.71E-04
44	Flange	Gas	12:30	16.3	7.4	0	0.0067	0.00000	16.4	6.1	0	0.0031	Y	0.00045	16.35	521.10	6.750		0.0031	0.00045	5.68E-04
45	Flange	Gas	13:38	28.1	7.4	0	0.0219	0.00000	28.2	6.5	0	0.0074	Y	0.00043	28.15	542.34	7.150		0.0074	0.00043	1.79E-03
46	Flange	Gas	14:55	27	6.8	0	0.0019	0.000171	27.00	5.7	0	0.0107	Y	0.00070	27.00	540.27	6.250		0.000463	0.00171	3.26E-05
47	Flange	Gas	10:56	17.7	8	0	0.000403	0.00000	17.9	6.6	0	0.000463	Y	0.00000	17.80	523.71	7.300		0.000463	0.00000	2.86E-03
48	Flange	Gas	14:41	26.9	6.2	0:00	0.0249	0.00000	26.90	5.1	0	0.0343	Y	0.00000	26.90	540.09	5.650		0.0343	0.00000	1.58E-03
49	Flange	Gas	9:36	32.8	6.5	0.00	0.0249	0.00000	32.8	5.3	0	0.0249	Y	0.00504	32.80	550.71	5.900		0.0249	0.00504	4.90E-03
50	Flange	Gas	9:33	32.5	7.2	0	0.032	0.00338	32.6	6.0	0.05	0.0922	Y	0.00304	32.55	550.26	6.600		0.0733	0.00304	5.03E-03
51	Flange	Gas	11:25	33	7.4	0	0.0428	0.00308	33.1	6.1	0.03	0.0922	ı	0.00233	33.05	551.16	6.750		0.0675	0.00308	4.72E-03
J1	i idlige	uas	11:25	33	7.4	U	0.057	0.00422	J 33.1	U.I	U	0.000		0.00403	33.03	331.10	0./50	<i>,</i> –	0.0013	0.00422	4./ZE-U3

Note: results with all values = zero are hidden, see

Appendix E for Descri	ptive Statistics for all leak		T	1		011UCTE						TED: 40 0						5D4 145THOD TO 45 00	
	Component Information		CALCULATED	CALCULATED	CALCULATED	CANISTER DATA						TEDLAR BAG DATA			nnmı: @ CTD	nnmy @ CTD	ppmv @ STP	EPA METHOD TO-15 CONCENTRATION DATA	nnmu @ CTD
Sort order, sorted by			CALCULATED	CALCULATED	CALCULATED										ppmv @ STP	ppmv @ STP	ppmv @ STP	ppmv @ STP 58.079	ppmv @ STP 78.112
Component Type, &																		30.073	70.112
Method 21	Component Type	Service	Log10 TVA as CH4,	Log10 CH4 EmRate,	Log10 TOC of Linked					Can I-Vac	Can F-Vac				1,3,5-Trimethyl		4 511 11 1		
Concentration, ppmv			ppmv	kg/hr, as methane	TOC Emissions Estimates, kg/hr	Sample #	Date	Time	Can ID	(in Hg)	(in Hg)	Sample(s) #	Date	Time	benzene	2-Hexanone	4-Ethyltoluene	Acetone	Benzene
A. Components in Ga	s Service with TVA, HiFlow,	TO-15 &																	
1	Connector	Gas	0.60	-4.58															
2	Connector	Gas	1.00	-4.27															
3	Connector	Gas	1.20	-4.94															
4	Connector	Gas	1.57	-4.58															
<u>5</u>	Connector Connector	Gas	1.70 1.79	-3.11 -3.30	-2.84	CAN010	Jan-23-2015	10:48	OEC-29-701	28.5	0	TB010	Jan-23-2015	10:52	ND	ND	ND	ND	2.20E+02
7	Connector	Gas Gas	2.13	-3.30	-2.84	CANUIU	Jan-23-2015	10:48	UEC-29-701	28.5	U	18010	Jan-23-2015	10.52	ND	ND	ND	ND	2.20E+02
8	Connector	Gas	2.30	-2.41															
9	Connector	Gas	2.48	-3.76															
10	Connector	Gas	2.70	-4.52															
11		Gas	2.83	-4.57															
12		Gas	2.85	-4.09	-5.76							TB030A/TB030B	Feb-26-2015	13:53	ND	ND	ND	ND	ND
13		Gas	2.90	-4.16								,							
14	Connector	Gas	3.00	-4.16															
15	Connector	Gas	3.04	-3.99															
16	Connector	Gas	3.25	-3.64															
17		Gas	3.30	-2.25															
18	Connector	Gas	3.34	-3.34															
19		Gas	3.38	-2.86															
20	Connector	Gas	3.41	-3.96															
21		Gas	3.66	-3.28															
22	Connector Connector	Gas	3.89 3.89	-2.96 -3.37															
24	Connector	Gas GAS	4.09	-3.37															
25		Gas	4.20	-3.49															
26	Connector	Gas	4.56	-2.59															
27	Connector	Gas	4.70	-0.98															
28	Connector	Gas	4.75	-2.51															
29	Connector	Gas	4.95	-1.74	-1.91	CAN008	Jan-22-2015	0.484027778	OEC-117-42	28	0	TB008	Jan-22-2015	11:40	ND	ND	ND	ND	ND
30	Connector	Gas	5.02	-1.93															
31	Connector	Gas	5.02	-1.48															
32	Connector	Gas	5.02	-0.98															
33		Gas	5.11	-1.81	-2.08	CAN003	Jan-20-2015	0.631944444	OEC-29-706	28.25	0	TB003	Jan-20-2015	15:16	1.60E+02	ND	2.10E+02	5.70E+02	7.80E+01
34		Gas	5.11	-1.18															
35	Connector	Gas	5.20	-2.25															
36		Gas	5.24	-1.46															
37		Gas	5.70	-1.01	0.00	CANCOE	Jan 24 2045	0.5377777	056 447 33	20	F. C	TDOOF	I 24 204	42.42	115	ND	4.005 : 04	A/D	2 205 : 02
38 39		Gas	-1.23	-1.31	-0.89	CAN005	Jan-21-2015	0.527777778	UEC-11/-32	28	5.6	TB005	Jan-21-2015	12:42	ND	ND	4.00E+01	ND	2.20E+03
40	Flange	Gas Gas	0.12 0.25	-5.02 -4.97															
40	Flange Flange	Gas	1.18	-4.97 -4.22															
42		Gas	1.60	-4.49															
43	Flange	Gas	1.60	-3.11															
44	Flange	Gas	1.69	-3.25															
45	Flange	Gas	2.05	-2.75	-5.72							TB027A/TB027B	Feb-24-2015	13:40	ND	ND	ND	ND	ND
46		Gas	2.48	-4.49	- 1-							. ,		,	1		_		.=
47	Flange	Gas	2.54	-2.54								TB024A/TB024B	Feb-23-2015	11:01	ND	ND	ND	ND	ND
48	Flange	Gas	2.55	-2.80															
49	Flange	Gas	2.70	-2.31															
50		Gas	2.85	-2.30															
51	Flange	Gas	3.04	-2.33															

Sort order, sorted by Component Type, & Method 21 Concentration, ppmv A. Components in Gas Service 1		Service V, TO-15 Gas Gas Gas Gas Gas Gas Gas Ga	Carbon disulfide		84.16	46.068	ppmv @ STP 88.11 Ethyl Acetate	106.165	Heptane	ppmv @ STP Hexachlorobuta diene	ppmv @ STP 86.18 Hexane	ppmv @ STP 60.1 Isopropyl alcohol	ppmv @ STP 100.16 Methyl Isobutyl Ketone	ppmv @ STP 92.14 Toluene	ppmv @ STP 105 TPH Gasoline (C4-C12)	131.4	ppmv @ STP 106.165 Xylenes (total)	METHOD TO-15 Calculated kg/hr 120.19 1,2,4-Trimethyl- benzene	kg/hr 120.19 1,3,5-Trimethyl- benzene	kg/hr 100.16 2-Hexanone	METHOD TO-15 Calcul kg/hr 120.1916 4-Ethyltoluene	kg/hr 58.079 Acetone	kg/hr 78.112 Benzene
Component Type, & Method 21 Concentration, ppmv A. Components in Gas Service 1	ce with TVA, HiFlow Connector	Gas	76.139 Carbon disulfide	Chlorobenzene	84.16 Cyclohexane	46.068 Ethanol	88.11 Ethyl Acetate	106.165 Ethylbenzene	Heptane	Hexachlorobuta	86.18	60.1	100.16 Methyl Isobutyl	92.14	105 TPH Gasoline	131.4 Trichloroethene	106.165 Xylenes	120.19 1,2,4-Trimethyl -	120.19 1,3,5-Trimethyl-	100.16	120.1916	58.079	78.112
Component Type, & Method 21 Concentration, ppmv A. Components in Gas Service 1	ce with TVA, HiFlow Connector	Gas	Carbon disulfide		Cyclohexane	Ethanol	Ethyl Acetate	Ethylbenzene	Heptane			Isopropyl	Methyl Isobutyl		TPH Gasoline	Trichloroethene	Xylenes	1,2,4-Trimethyl-	1,3,5-Trimethyl-				
Method 21 Concentration, ppmv A. Components in Gas Service 1 2 3 4 5 6 7 8 9 10 11 12 13 14	ce with TVA, HiFlow Connector	Gas	Carbon disulfide								Hexane			Toluene				•	-	2-Hexanone	4-Ethyltoluene	Acetone	Benzene
A. Components in Gas Service 1	ce with TVA, HiFlow Connector	Gas	Carbon disulfide								Hexane			Toluene				•	-	2-Hexanone	4-Ethyltoluene	Acetone	Benzene
A. Components in Gas Service 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Connector	Gas								diene	Hexane	alcohol	Ketone	Toluene	(C4-C12)	(TCE)	(total)	benzene	benzene	Z-Hexanone	4-Etnyitoiuene	Acetone	Benzene
1	Connector	Gas		ND	8.10E+02	ND	ND	ND							,	, ,	(1111)						
1	Connector	Gas		ND	8.10E+02	ND	ND	ND															
1	Connector	Gas		ND	8.10E+02	ND	ND	ND															
2	Connector	Gas	ND	ND	8.10E+02	ND	ND	ND															
3 (4) (4) (5) (6) (7) (6) (7) (8) (9) (10) (11) (12) (13) (14) (14) (15) (15) (15) (15) (15) (15) (15) (15	Connector	Gas	ND	ND	8.10E+02	ND	ND	ND															
4 6 6 6 7 7 8 6 9 9 10 11 1 12 12 13 14 16 16 17 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Connector	Gas Gas Gas Gas Gas Gas Gas Gas	ND	ND	8.10E+02	ND	ND	ND															
5 6 7 8 9 6 9 10 11 12 12 13 14 6	Connector	Gas Gas Gas Gas Gas Gas Gas	ND	ND	8.10E+02	ND	ND	ND															
6 (7) (8) (8) (9) (10) (11) (12) (13) (14) (14) (15) (15) (17) (17) (17) (17) (17) (17) (17) (17	Connector	Gas Gas Gas Gas Gas Gas Gas	ND	ND	8.10E+02	ND	ND	ND															
7 8 9 9 10 11 11 12 12 13 14 14 16	Connector Connector Connector Connector Connector Connector Connector Connector Connector	Gas Gas Gas Gas Gas Gas	ND	IND	0.102102	ND	NB	IND	4.40E+02	ND	1.50E+03	ND	ND	1 80F±01	2.90E+04	ND	1.10E+01	_	_	_		_	7.4825E-06
8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Connector Connector Connector Connector Connector Connector Connector Connector	Gas Gas Gas Gas Gas							4.40L102	ND	1.502105	ND	IND	1.002101	2.30L104	ND	1.101.101						7.40232 00
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Connector Connector Connector Connector Connector Connector Connector	Gas Gas Gas Gas																					
10 (11 (12 (13 (14 (14 (14 (14 (14 (14 (14 (14 (14 (14	Connector Connector Connector Connector Connector	Gas Gas Gas																					
11 (12 (13 (14 (14 (14 (14 (14 (14 (14 (14 (14 (14	Connector Connector Connector Connector	Gas Gas																					
12 13 14	Connector Connector Connector	Gas																					
13 (14 (14 (14 (14 (14 (14 (14 (14 (14 (14	Connector Connector		ND	ND	ND	6.10E+01	ND	ND	ND	ND	ND	ND	ND	9.80E+00	ND	ND	ND						
14	Connector		ואַט	IND	IAD	0.10E+01	IND	IND	ואט	IND	ND	IND	ND	3.00E+00	IND	IAD	IND	-	-	-	-	-	
		Gas																					
		Gas																					
	Connector																						
		Gas															-						
	Connector	Gas																					
	Connector	Gas																					
	Connector	Gas																					
	Connector	Gas																					
	Connector	Gas																					
	Connector	Gas																					
	Connector	Gas					1																
	Connector	GAS																					
	Connector	Gas																					
	Connector	Gas																					
	Connector	Gas																					
	Connector	Gas																					-
	Connector	Gas	ND	ND	ND	3.90E+02	ND	ND	ND	ND	ND	ND	ND	8.40E+01	ND	ND	ND		-	-	-	-	
	Connector	Gas																					
	Connector	Gas																					
_	Connector	Gas																					1 22 12 2 2
	Connector	Gas	ND	ND	1.60E+03	ND	ND	7.80E+01	4.60E+02	ND	2.60E+03	1.30E+02	ND	8.00E+01	9.00E+04	ND	2.90E+02	1.2575E-05	5.1591E-06	-	6.7714E-06	8.8813E-06	1.6345E-06
	Connector	Gas																					
	Connector	Gas																					
	Connector	Gas																					
	Connector	Gas	115		4.405.00	2.405.02	N.D.	7.005.01	4.005.00	ND	1.005.61	6.005.65	4 205 .02	4.505.63	2.205.05	N.D.	2.405.03	2 50475 06			2 25255 05		0.05555.55
38	Flange	Gas	ND	ND	4.40E+03	2.10E+02	ND	7.80E+01	1.90E+03	ND	1.00E+04	6.80E+02	1.20E+02	1.50E+03	3.30E+05	ND	2.40E+02	2.5917E-06	-	-	2.2536E-06	-	8.0555E-05
39	Flange	Gas																					
40	Flange	Gas																					
41	Flange	Gas																					
42	Flange	Gas																					
43	Flange	Gas																					
44	Flange	Gas																					
45	Flange	Gas	ND	ND	ND	8.40E+01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	
46	Flange	Gas																					
47	Flange	Gas	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	
48	Flange	Gas																					
49	Flange	Gas																					
50	Flange	Gas																					
51	Flange	Gas																					

47

48

49

50

51

Flange

Flange

Flange

Flange

Flange

Gas

Gas

Gas

Gas

Section 2, Appendix A: Field & Lab Data & Calculations

Note: results with all values = zero are hidden, see

Appendix E for Descriptive Statistics for all leak Component Information ASTM 1945/3588 Concentration Data kg/hr kg/hr 100.16 kg/hr kg/hr 106.165 kg/hr Sort order, sorted by 76.139 112.56 84.16 46.068 88.11 106.165 100.21 86.18 92.14 131.4 60.1 105 Component Type, & Method 21 Component Type Service /lethyl Isobuty Oxygen Oxygen Nitrogen Nitrogen Hydrogen Isopropyl Concentration, ppm Carbon disulfide Chlorobenzene Cyclohexane Ethanol Ethyl Acetate Ethylbenzen Heptane Hexane Xylenes (total) alcohol (C4-C12) (TCE) (Mol%) (ppb) (Mol%) Ketone (Mol%) (ppb) A. Components in Gas Service with TVA, HiFlow, TO-15 & Connector Gas Connector 3 Connector Gas 4 Connector Connector Gas 7.2215E-07 1.3259E-03 5.0849E-07 2.1483E+01 2.1483E+08 7.8476E+01 7.8476E+08 2.9682E-05 1.9199E-05 5.6287E-05 Connector Gas Connector Gas 8 Connector Gas Connector 10 Connector Gas 11 Connector Gas 1.3211E-06 4.2451E-07 2.1559E+01 2.1559E+08 7.8398E+01 7.8398E+08 12 Connector Gas 13 Connector 14 Connector Gas Connector 15 Gas 16 Connector Gas 17 Connector 18 Connector 19 Connector Gas 20 Connector Gas Connector 22 23 Connector Gas GAS 24 Connector 25 Connector Gas 26 Connector 27 Connector Gas 28 Connector Gas 2.1482E+08 7.8344E+01 7.8344E+08 8.9778E-06 3.8675E-06 2.1482E+01 29 Connector 30 Connector Gas Connector Connector Gas 3.6125E-05 1.9775E-06 2.5352E-03 8.2597E-06 2.1354E+01 2.1354E+08 7.8390E+01 7.8390E+08 33 Connector Gas 34 Connector Gas 35 Connector Connector Gas 37 Connector Gas 1.7358E-04 4.5349E-06 3.8817E-06 8.9251E-05 4.0398E-04 1.9157E-05 5.6341E-06 6.4787E-05 1.6243E-02 1.1944E-05 2.1273E+01 2.1273E+08 7.7575E+01 7.7575E+08 38 Gas Flange 39 Flange Gas 40 Flange Gas 41 Flange Gas Flange 42 Gas 43 Flange Gas 44 Flange 45 Flange 2.1569E+01 2.1569E+08 7.8388E+01 7.8388E+08 Gas 46 Gas Flange

2.1533E+01

2 1533F+08

7 8447F+08

7 8447F+01

	tive Statistics for all leal																									
(Component Information																		ASTM 1945/3588 Concentration Data			ASTM 1945/3588 Emissions (kg/hr)				
Sort order, sorted by																										
Component Type, &																						31.9988	28.0134	2.01	28.0106	44.01
Method 21	Component Type	Service		Carbon	Carbon	Carbon	Carbon																			
	Component Type	Service	Hydrogen					Methane	Methane	Ethane	Ethane	Propane	Propane	i-Butane	i-Butane	n-Butane	n-Butane	i-Pentane	i-Pentane	n-Pentane	n-Pentane	0	Minusan	Underson	Carbon	Carbon
Concentration, ppmv			(ppb)	Dioxide	Dioxide		Monoxide	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	Oxygen	Nitrogen	Hydrogen	Monoxide	Dioxide
			,	(Mol%)	(ppb)	(Mol%)	(ppb)	. ,	,	, ,		, ,	,	, ,	,	, ,	,	, ,	"" '	. ,	,					(
A. Components in Gas	Service with TVA, HiFlo	w, TO-15																								
1	Connector	Gas																								
2	Connector	Gas																								
3	Connector	Gas																								
4	Connector	Gas																								
5	Connector	Gas																								
6	Connector	Gas		4.0408E-02	4.0408E+05	_	-	-	-	-		_	-	_	-	_	-		-	_	_	2.9933E+00	9.5722E+00	-	_	7.7433E-03
7	Connector	Gas																					0.01.22.00			
8	Connector	Gas																								
9	Connector	Gas																								
10	Connector	Gas																								
11	Connector	Gas																								
12	Connector	Gas	-	4 2709F-02	4.2709E+05	-	-	-	-	-	-	-	-	-	-	-				-	-	3.2432E+00	1.0325E+01	-	-	8.8365E-03
13	Connector	Gas		4.2703E 02	4.27032103																	3.24322100	1.03232.01			0.03032 03
14	Connector	Gas																								
15	Connector	Gas																								
16	Connector	Gas																								
17	Connector	Gas																								
18	Connector	Gas																								
19	Connector	Gas																								
20	Connector	Gas																								
21	Connector	Gas																								
22	Connector	Gas																								
23	Connector	Gas																								
24	Connector	GAS																								
25	Connector	Gas																								
26	Connector	Gas																								
27	Connector	Gas																								
28	Connector																									
		Gas		4 42015 02	4.4301E+05			1 15575 01	1.1557E+06			1 25075 02	1.3587E+05									3.4350E+00	1.0967E+01			9.7426E-03
29 30	Connector Connector	Gas	-	4.4301E-02	4.4301E+05	-	-	1.1557E-01	1.155/E+U6	-		1.358/E-UZ	1.338/E+U5	-	-	-	_		-	_	-	3.4350E+00	1.096/E+01	-		9.7426E-U3
31	Connector	Gas																								
32	Connector																									
33		Gas		1 22005 01	1.2396E+06			1 21015 01	1.3181E+06													1.8332E+00	5.8913E+00			1.4636E-02
33	Connector	Gas		1.2390E-01	1.2390E+06	-	-	1.3181E-U1	1.3181E+Ub	_	_	_	_	_		-	_			_	-	1.853ZE+UU	3.8913E+00	-	-	1.4030E-UZ
35	Connector Connector	Gas Gas																								
36	Connector	Gas																								
36	Connector	Gas																								
38		Gas		C 45025 02	6.4582E+05			0.07225.01	0.07225+06	4.8231E-02	4 02215 - 05	C 00505 03	C 00505+05	2.02405.02	2.02405+05	2 74025 02	2 74025 - 05	1 47425 02	1.4742E+05	1 14425 02	1.1443E+05	3.1909E+00	1.0187E+01			1.3323E-02
39	Flange		-	0.458ZE-UZ	0.458ZE+U5	-	-	8.8723E-U1	8.8723E+U0	4.8231E-UZ	4.8231E+05	0.8058E-02	0.8058E+05	2.0348E-02	2.0348E+05	3.74UZE-UZ	3.74UZE+U3	1.4742E-02	1.4742E+05	1.1443E-UZ	1.1443E+U5	3.1909E+00	1.018/E+01	-		1.3323E-U2
40	Flange	Gas Gas																								
40	Flange Flange	Gas																								
41	Flange	Gas																								
42	Flange	Gas																								
43	Flange	Gas																								
45	Flange	Gas		4 20675 02	4.2967E+05																	3.4282E+00	1.0908E+01			9.3929E-03
45	Flange	Gas		4.290/E-UZ	4.290/E+U5	-	-	-	_	_	_	_	_	_		-	_			_	-	3.4282E+UU	1.0908E+01	-	-	5.3929E-U3
46	Flange	Gas		1.05445.03	1.9544E+05																	3 50345 : 00	1 14575 . 04			4.4843E-03
47		Gas	_	1.9544E-02	1.9544E+05	-	-	-	_	-	-	_	-	_	-	-	_		-	_	-	3.5924E+00	1.1457E+01	-	-	4.4843E-U3
	Flange																									
49	Flange	Gas																								
50	Flange	Gas																								
51	Flange	Gas																								

Note: results with all values = zero are hidden, see Appendix E for Descriptive Statistics for all leak

Component Information kg/hr 72.15 kg/hr 72.15 kg/hr kg/hr kg/hr kg/hr kg/hr kg/hr Sort order, sorted by 16.043 30.07 44.097 58.123 58.123 CALCULATE Component Type, & Method 21 **Component Type** TOC, kg/hr Methane i-Butane Ethane Propane n-Butane i-Pentane n-Pentane Concentration, ppm does not inc TPH) A. Components in Gas Service with TVA, HiFlow, TO-15 Connector Gas Connector 3 Connector Gas 4 Connector Gas Connector Gas 1.4397E-03 6 Connector Gas Connector Gas 8 Connector Gas Connector Gas 10 Connector Gas 11 Connector Gas 12 Connector Gas 1.7456E-06 13 Connector Gas 14 Connector Gas 15 Connector Gas Connector 16 Gas Connector Gas 18 Connector Gas 19 Connector Gas 20 Connector Gas 21 Connector Gas 22 Connector Gas 23 Connector Gas 24 Connector GAS 25 Connector Gas 26 Connector Gas 27 Connector Gas 28 Connector Gas 29 Connector Gas 9.2648E-03 2.9940E-03 1.2272E-02 30 Connector Gas 31 Connector Gas 32 Connector Gas 5.6732E-03 8.3666E-03 33 Connector Gas 34 Connector Gas 35 Connector Gas 36 Connector Gas 37 Connector Gas Gas 6.6723E-02 6.7985E-03 1.4068E-02 5.5439E-03 1.0190E-02 4.9859E-03 3.8703E-03 1.2928E-01 38 Flange 39 Flange Gas Flange 40 Gas 41 Flange Gas Flange 42 Gas 43 Gas Flange 44 Flange Gas 1.9222E-06 45 Flange Gas 46 Flange Gas Flange 47 Gas 48 Flange Gas 49 Flange Gas 50 Flange Gas 51 Flange Gas

Note: results with all values = zero are hidden, see Appendix E for Descriptive Statistics for all leak

	Component Information	Site C	haracterization						METEOROLOGY	:			METEOROLOGY
Sort order, sorted by													
Component Type, &													
Method 21	Component Type	Service							WIND	WIND	AMBIENT		BAROMETRIC
	Component Type	Service	EQUIPMENT/ACTIVITY DESCRIPTION	DATE	REGULATORY IDs	#WELLS	FACILITY TYPE: (OIL/GAS)	THROUGHPUT(s)	DIRECTION	SPEED	TEMPERATURE	E % RH	PRESSURE
Concentration, ppmv				5,112					FROM	(mph)	(F)	/ /	(inHg)
C	Comice with TVA Hillow	TO 15 8							7.1.0.1.1	(թ)	1.7	+	(8/
52	Service with TVA, HiFlow, Flange		al Gas Well	14-Aug-15		1	Gas	38.1 MCF/D	SE	2.4	81	49.6	29.97
53	Flange		al Gas Well	11-Aug-15		1	Gas	612.5 MCF/D	W	3.4	88	49.6	29.77
54	Flange		al Gas Well	11-Aug-15 14-Aug-15		1	Gas	38.1 MCF/D	SE	2.4	81	49.6	29.97
55	Flange		al Gas Well	11-Aug-15		1	Gas	612.5 MCF/D	W	3.4	88	48.7	29.77
56	Flange		al Gas Well	11-Aug-15		1	Gas	612.5 MCF/D	W	3.4	88	48.7	29.77
57	Flange		al Gas Well Site	6-Aug-15		1	Gas	0 SCFM	W	5.2	88.5	52.7	29.73
58	Flange		al Gas Well	14-Aug-15		1	Gas	38.1 MCF/D	SE	2.4	81	49.6	29.97
59	Flange	Gas Water	separation		TITLE V 041	0	Gas		WSW	4	81.3	34.5	29.5
60	OEL		al Gas Well	7-Aug-15		3 + 1 inactive	Gas	19-10: 17.8 MCF/24-1: 18.8 MCF/19.8: 142.4 MCF	E	7	73.4	56.1	29.74
61	OEL	Gas Gas W	/ells	24-Feb-15	SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
62	OEL	Gas Gas W	/ells	24-Feb-15	SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
63	OEL	Gas Gas W			SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
64	OEL		al Gas Well with lift compressor and glycol dehydrator		SEC.9 T-19N R-2W	1	Gas	88.1 MCF/DAY	NNW	15.9	52.5	23.1	29.98
65	OEL	Gas Gas W			SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
66	OEL	Gas Gas W			SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	3	60	31	30.14
67	OEL	Gas Gas W			SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
68	OEL	Gas Gas W			SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	3	60	31	30.14
69	OEL		al Gas Well	7-Aug-15		3 + 1 inactive	Gas	19-10: 17.8 MCF/24-1: 18.8 MCF/19.8: 142.4 MCF	E	7	73.4	56.1	29.74
70	OEL		al Gas Well	13-Aug-15		1	Gas	49.1 MCF/D	SE	3.4	82.4	45	29.93
71	OEL	Gas W			SEC.33 T-20N R-2W	2	Gas	2098.5MCF/DAY	N	17.9	80.2	23.7	29.7
72	OEL		al Gas Well	11-Aug-15		1	Gas	33-34-2:140.5, 33-34-1:75.9 MCF/D	W	3.6	86.1	46.5	29.78
73	OEL	Gas W			SEC.33 T-20N R-2W	2	Gas	2098.5MCF/DAY	N	3	57.1	64	29.67
74 75	OEL		al Gas Well	11-Aug-15		1	Gas	33-34-2:140.5, 33-34-1:75.9 MCF/D 192.3 MCF/D	W	3.6 3.9	86.1 83	46.5	29.78 29.96
75 76	OEL OEL		al Gas Well al Gas Well	12-Aug-15		1	Gas	38.1 MCF/D	SW SE	2.4	81	44.6 49.6	29.96
77	OEL	Gas Gas W		14-Aug-15	SEC.33 T-20N R-2W	4	Gas Gas	140.9MCF/DAY	N N	1.3	46	50	29.97
78	OEL		al Gas Well	14-Aug-15	3EC.33 1-2011 R-244	1	Gas	149.9 MCF/D	SE	3.7	86	38.5	29.95
79	OEL		al Gas Well	13-Aug-15		1	Gas	49.1 MCF/D	SE	3.4	82.4	45	29.93
80	OEL	1	al Gas Well	13-Aug-15		2	Gas	32-12: 71.8 MCF/D, 32-14: 80 MCFD,	SE	3.2	89	38.8	29.91
81	OEL		al Gas Well	11-Aug-15		1	Gas	612.5 MCF/D	W	3.4	88	48.7	29.77
82	OEL		al Gas Well with lift compressor and glycol dehydrator		SEC.9 T-19N R-2W	1	Gas	88.1 MCF/DAY	NNW	15.9	52.5	23.1	29.98
83	OEL		al Gas Well	7-Aug-15		3 + 1 inactive	Gas	19-10: 17.8 MCF/24-1: 18.8 MCF/19.8: 142.4 MCF	E	7	73.4	56.1	29.74
84	OEL		al Gas Well	14-Aug-15		1	Gas	62.5 MCF/D	W	5.7	72.1	52.2	29.97
85	OEL		al Gas Well	12-Aug-15		1	Gas	179 MCF/D	SW	2.5	85.2	42.8	29.94
86	OEL	Gas Gas W	/ells		SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
87	OEL	Gas Gas W	/ells	26-Feb-15	SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	1.3	46	50	29.93
88	OEL	Gas Gas W	/ells		SEC.33 T-20N R-2W	2	Gas	2098.5MCF/DAY	N	3	57.1	64	29.67
89	OEL	Gas Gas W			SEC.33 T-20N R-2W	2	Gas	2098.5MCF/DAY	N	3	57.1	64	29.67
90	OEL	Gas Gas W			SEC.33 T-20N R-2W	2	Gas	2098.5MCF/DAY	N	3	57.1	64	29.67
91	OEL		al Gas Well	7-Aug-15		3 + 1 inactive	Gas	19-10: 17.8 MCF/24-1: 18.8 MCF/19.8: 142.4 MCF	E	7	73.4	56.1	29.74
92	OEL		al Gas Well	11-Aug-15		1	Gas	33-34-2:140.5, 33-34-1:75.9 MCF/D	W	3.6	86.1	46.5	29.78
93	OEL		al Gas Well	11-Aug-15		1	Gas	612.5 MCF/D	W	3.4	88	48.7	29.77
94	Other	Gas W			SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	1.3	46	50	29.93
95	Other	Gas W			SEC.33 T-20N R-2W	2 (25.47)	Gas	2098.5MCF/DAY	N N	3	57.1	64	29.67
96	Other		al Gas Well	7-Aug-15		3 (25-17 inactive)	Gas	30-10: 78.4 MCF/25-17:0/30-6:134.6 MCF	W	0.8	97.2	30.7	29.73
97	Other		al Gas Well	12-Aug-15	CEC 22 T 2011 B 2111	1	Gas	179 MCF/D	SW	2.5	85.2	42.8	29.94
98	Other	Gas Gas W			SEC.33 T-20N R-2W	2 (25 47 in a shirts)	Gas	140.9MCF/DAY	N VA	3	60	31	30.14
99	Other		al Gas Well	7-Aug-15	SEC 22 T 20N P 2N/	3 (25-17 inactive)	Gas	30-10: 78.4 MCF/25-17:0/30-6:134.6 MCF	W	0.8	97.2	30.7	29.73
100 101	Other Other	Gas Gas W Gas Oil Wa			SEC.33 T-20N R-2W LAFD #2990	5	Gas Oil	140.9MCF/DAY	N ESE	1.3 4.5	46 57.2	50 70.5	29.93 29.9
101	Other	Gas Oil Wa	ater Gas Separation	20-Jan-15 22-Jan-15		10	Oil	44 bb/day oil, 51 bb/day water	ESE	1.7	76.3	70.5 41.8	30.14
102	Other	Gas Gas W	tolls.		SEC.33 T-20N R-2W	4	Gas	150 bbls/day Oil, 1000 bbls/day Water 140.9MCF/DAY	N ESE	2./	60	31	30.14

Note: results with all values = zero are hidden, see Appendix E for Descriptive Statistics for all leak

Y [2] = Y, Avanti
Y [3] = Y, Operator run with Eagle
Y [4] = Y, Operator run with Eagle quarterly
Y [5] = Y, Quarterly, Summit

Appendix E for Descrip	ptive Statistics for all leak							Y [5] = Y, Quarterly, Summit						
	Component Information				Site Characterization				Component Information IR CAMER	A	EPA Method 21 Results			HIGH FLOW SAMPLER DATA
Cambandar 1	,								,					
Sort order, sorted by														
Component Type, &													Method 21	
Method 21	Component Type	Service		WEATHER (sunny,										
Concentration, ppmv			% CLOUD COVER	cloudy, fair, fog, haze,	# SEPARATORS	# TANKS	# COMPRESSORS	DOES SITE HAVE LDAR PLAN? (Y/N)	Description Date	Time	Date	Time	Leak	Date
Concentration, pp.n.c				light rain, heavy rain)				, , ,				1 0	Concentration,	, , , , , , , , , , , , , , , , , , , ,
				light ram, neavy ram,									vmaa	
A. Components in Gas	s Service with TVA, HiFlow	, TO-15 &	t											
52	Flange	Gas	0	Sunny	1	1	1	N	12-INCH ON COMPRESSOR		14-Aug-15	12:21	1,500.00	14-Aug-15
53	Flange	Gas	10	Sunny	1	2	1	N	32-inch on compressor		12-Aug-15	10:38	1,700.00	12-Aug-15
54	Flange	Gas	0	Sunny	1	1	1	N	12-INCH ON LINE BELOW COMPRESSOR		14-Aug-15	12:28	2,000.00	14-Aug-15
55	Flange	Gas	10	Sunny	1	2	1	N	24-inch on compressor @ end of piston		12-Aug-15	10:23	6.000.00	12-Aug-15
56	Flange	Gas	10	Sunny	1	2	1	N	12-inch on compressor		12-Aug-15	10:27	7,000.00	12-Aug-15
57	Flange	Gas	85	Cloudy	2	1	1	N	6-inch		6-Aug-15	14:50	27.000.00	6-Aug-15
58	Flange	Gas	0	Sunny	1	1	1	N N	32-INCH AT END OF COMPRESSOR PISTON		14-Aug-15	12:33	116,000.00	14-Aug-15
59	Flange	Gas	50	light cloudy		-	1	Y [3]	A" -	_	Jan-29-2015	11:29	130,000.00	Jan-29-2015
					4	-	1		T					
60	OEL	Gas	80	Cloudy/overcast	1	5	1	N N	3/8-inch	-	7-Aug-15	10:55	1.13	7-Aug-15
61	OEL	Gas	0	sunny	4	5	1	N .	1/2" -	-	Feb-24-2015	11:02	1.56	Feb-24-2015
62	OEL	Gas	0	sunny	4	5	1	N	1/4" -	-	Feb-24-2015	10:59	1.82	Feb-24-2015
63	OEL	Gas	0	sunny	4	5	1	N	1/2" -	-	Feb-24-2015	11:07	1.87	Feb-24-2015
64	OEL	Gas	10	sunny	1	1	2	N	at Vessel S90 V-11053 -	-	Feb-23-2015	12:17	3.80	Feb-23-2015
65	OEL	Gas	0	sunny	4	5	1	N	1/2" -	-	Feb-24-2015	12:58	12.00	Feb-24-2015
66	OEL	Gas	70	Cloudy	4	7	2	N	3/8" on P47	-	Feb-25-2015	13:34	20.00	Feb-25-2015
67	OEL	Gas	0	sunny	4	5	1	N	at compressor -	-	Feb-24-2015	14:29	30.00	Feb-24-2015
68	OEL	Gas	70	Cloudy	4	7	2	N	1/4" on P47	-	Feb-25-2015	13:30	30.00	Feb-25-2015
69	OEL	Gas	80	Cloudy/overcast	1	5	1	N	1/2" Qwik Disconnect		7-Aug-15	11:00	119.00	7-Aug-15
70	OEL	Gas	0	Sunny	2	1	1	N	1-inch OEL @ Separator 3282		13-Aug-15	11:16	200.00	13-Aug-15
71	OEL	Gas	30	sunny	1	2	2	N N	3/8" at compressor -	_	Feb-26-2015	14:58	350.00	Feb-26-2015
72	OEL	Gas	15	Sunny	3	1	1	N N	3/4" @ METER		11-Aug-15	12:29	350.00	11-Aug-15
73	OEL	Gas	20	Sunny	1	2	2	N N	Drip Oil Bucket	+	Feb-27-2015	10:20	350.00	Feb-27-2015
74	OEL	Gas	15	Sunny	3	1	1	N N	3/4" spherical well tester		11-Aug-15	12:45	450.00	11-Aug-15
			0		1	1	1	**	, ,	_			1,500.00	
75	OEL	Gas		Sunny				N N	Valve Bleeder		12-Aug-15	11:51		12-Aug-15
76	OEL	Gas	0	Sunny	1	1	1	.,	1/4 AT END OF COMPRESSOR		14-Aug-15	12:09	3,000.00	14-Aug-15
77	OEL	Gas	10	sunny	4	7	2	N	at compressor -	-	Feb-26-2015	9:28	5,000.00	Feb-26-2015
78	OEL	Gas	5	Sunny	1	1	1	N	3/8-INCH ON COMPRESSOR		14-Aug-15	14:08	9,800.00	14-Aug-15
79	OEL	Gas	0	Sunny	2	1	1	N	1-inch OEL @ Separator 3282		13-Aug-15	11:20	10,000.00	13-Aug-15
80	OEL	Gas	0	Sunny	1	2	1	N	1/2-inch on OOS vessel by large compressor		13-Aug-15	13:16	10,000.00	13-Aug-15
81	OEL	Gas	10	Sunny	1	2	1	N	1-inch on compressor		12-Aug-15	10:19	26,000.00	12-Aug-15
82	OEL	Gas	10	sunny	1	1	2	N	Oil Drain Bucket on compressor engine -	-	Feb-23-2015	11:12	57,000.00	Feb-23-2015
83	OEL	Gas	80	Cloudy/overcast	1	5	1	N	1/4" vent		7-Aug-15	11:15	83,160.00	7-Aug-15
84	OEL	Gas	0	Sunny	1	2	1	N	AT END OF COMPRESSOR		14-Aug-15	10:32	90,000.00	14-Aug-15
85	OEL	Gas	0	Sunny	2	1	1	N	1/2-inch on Compressor Body		12-Aug-15	13:01	90,000.00	12-Aug-15
86	OEL	Gas	0	sunny	4	5	1	N	at compressor -	-	Feb-24-2015	13:29	100,000.00	Feb-24-2015
87	OEL	Gas	10	sunny	4	7	2	N N	on metering pad -	-	Feb-26-2015	14:17	100,001.00	Feb-26-2015
88	OEL	Gas	20	Sunny	1	2	2	N N	On Compressor Piston Heads by V-4003E		Feb-27-2015	9:52	100,001.00	Feb-27-2015
89	OEL	Gas	20	Sunny	1	2	2	N N	On Compressor Piston heads by V-4003A		Feb-27-2015	10:04	300,000.00	Feb-27-2015
90	OEL	Gas	20	Sunny	1	2	2	N N	at compressor by V5330D above viewing window		Feb-27-2015	9:16	400,000.00	Feb-27-2015
91	OEL	Gas	80	Cloudy/overcast	1	5	1	N N	1/4" Vent		7-Aug-15	11:33	420,001.00	7-Aug-15
92	OEL	Gas			3	1	1	N N	7			12:22	500,001.00	
	OEL		15	Sunny		1		N N	1/2" on meter	_	11-Aug-15			11-Aug-15
93		Gas	10	Sunny	1	2	1	**	1-inch on compressor		12-Aug-15	10:05	500,001.00	12-Aug-15
94	Other	Gas	10	sunny	4	7	2	N	PRV Weep hole on compressor V4016E -	-	Feb-26-2015	9:34	11.00	Feb-26-2015
95	Other	Gas	20	Sunny	1	2	2	N	Meter on Small Blue Compressor		Feb-27-2015	11:12	20.00	Feb-27-2015
96	Other	Gas	30	Sunny	3	2	1	N	Pressure Regulator		7-Aug-15	13:55	30.00	7-Aug-15
97	Other	Gas	0	Sunny	2	1	1	N	Pressure Regulator Vent		12-Aug-15	12:57	68.00	12-Aug-15
98	Other	Gas	70	Cloudy	4	7	2	N	Controller valve actuator on dehydrator P32 V10870 -	-	Feb-25-2015	14:19	71.00	Feb-25-2015
99	Other	Gas	30	Sunny	3	2	1	N	Level Controller		7-Aug-15	13:41	90.00	7-Aug-15
100	Other	Gas	10	sunny	4	7	2	N	level control on compressor -	-	Feb-26-2015	10:02	300.00	Feb-26-2015
101	Other	Gas	100	cloudy	0	3	2	Υ	Gas Regulator -	-	Jan-20-2015	10:00	300.00	Jan-20-2015
102	Other	Gas	50	Sunny	15	5	4	Y [2]	Plexiglas cover plate on vapor recovery compressor -	-	Jan-22-2015	12:00	356.00	Jan-22-2015
103	Other	Gas	70	Cloudy	15	7	2	N	Gas regulator on V10749 -	_	Feb-25-2015	13:07	585.00	Feb-25-2015
103	Other	Jus	70	Libudy	. 4	,		IN			1 60-53-5013	13.07	303.00	I CN-52-5013

Annendix F for Descript	ive Statistics for all leak																				
	Component Information																				HIGH FLOW SAMPLER DATA
-	component information			Flow #1					Flow #2						Average						CALCULATED
Sort order, sorted by				11000 #12					11000 #12						Average						CALCOLATED
Component Type, &																					
Method 21 Concentration, ppmv	Component Type	Service	Time	Temperature (Degree C)	Flow CFM	Bkg %	%CH4 (%)	% CFM	Temperature (Degree C)	Flow CFM	Bkg %	%СН4	Is the %CH4 a TVA reading?	% CFM	Temperature (°C)	Temperature (°R)	Flow CFM	Bkg %	%СН4	% CFM	Calculated CH4 Emissions Rate, kg/hr, STP, as methane
A. Components in Gas :	Service with TVA, HiFlow,	TO-15 &																			
52	Flange	Gas	11:22	32.6	7.8	0	0.05	0.00390	32.7	6.3	0	0.042		0.00265	32.65	550.44	7.050	-	0.046	0.00390	3.69E-03
53	Flange	Gas	9:39	32.9	5.9	0	0.0465	0.00274	33	5.0	0	0.1296	Υ	0.00648	32.95	550.98	5.450		0.08805	0.00648	5.42E-03
54	Flange	Gas	11:29	33.3	7.7	0	0.11	0.00847	33.3	6.4	0	0.05		0.01000	33.30	551.61	7.050	-	0.08	0.01000	6.41E-03
55	Flange	Gas	9:24	30.5	6.2	0.03	0.46	0.04000	30.9	5.3	0.03	0.67		0.04000	30.70	546.93	5.750		0.565	0.04000	3.67E-02
56	Flange	Gas	9:29	32	6.2	0.11	3.77	0.22000	32.1	5.3	0.11	3.68		0.23000	32.05	549.36	5.750		3.725	0.23000	2.42E-01
57	Flange	Gas	13:44	37.3	7.8	0	0.002	0.00016	37.3	6.6	0	0.004	Υ	0.00026	37.30	558.81	7.200	-	0.003	0.00026	2.44E-04
58	Flange	Gas	11:34	33.6	7	0	0.91	0.07000	33.7	6.4	0	1.12		0.07000	33.65	552.24	6.700	-	1.015	0.07000	7.73E-02
59	Flange	Gas	11:29	23.1	6.6	0	0.0163	0.00000	23.20	5.5	0	0.0163	Υ	0.00000	23.15	533.34	6.050	-	0.0163	0	1.10E-03
60	OEL	Gas	9:55	27.1	7.5	0	0.000168	0.00001	27.3	6.3	0	0.000281		0.00002	27.20	540.63	6.900	-	0.0002245	0.00002	1.75E-05
61	OEL	Gas	11:02	19.7	7.9	0	0.000155	0.00001	19.6	6.3	0	0.000172	Υ	0.00001	19.65	527.04	7.100	-	0.000172	0.00001	1.40E-05
62	OEL	Gas	10:59	19.6	8.5	0	0.000172	0.00001	19.6	6.9	0	0.00016	Υ	0.00001	19.60	526.95	7.700	-	0.000172	0.00001	1.52E-05
63	OEL	Gas	11:07	19.8	7	0	0.000172	0.00001	19.8	5.7	0	0.000165	Υ	0.00001	19.80	527.31	6.350	-	0.000172	0.00001	1.25E-05
64	OEL	Gas	12:17	16.4	5.6	0	0	0.00000	16.4	4.8	0	0.000356	Υ	0.00002	16.40	521.19	5.200	-	0.000356	0.00002	2.11E-05
65	OEL	Gas	12:58	22.3	7.9	0	0.0011	0.00009	22.5	6.4	0	0.00157	Υ	0.00010	22.40	531.99	7.150	-	0.00157	0.00010	1.29E-04
66	OEL	Gas	13:34	25.1	7.4		0.00045	0.00003	25.1	6.1		0.00167	Υ	0.00010	25.10	536.85	6.750	-	0.00167	0.00010	1.29E-04
67	OEL	Gas	14:29	32.1	7.1	0	0.001	0.00007	32.1	5.6	0	0.0034	Υ	0.00019	32.10	549.45	6.350	-	0.0034	0.00019	2.47E-04
68	OEL	Gas	13:30	25.2	8.2		0.0032	0.00026	25.2	6.8		0.0092	Υ	0.00063	25.20	537.03	7.500	-	0.0092	0.00063	7.89E-04
69	OEL	Gas	10:01	28.3	7.4	0	0.00202	0.00015	28.5	6.0	0	4.6		0.27600	28.40	542.79	6.700	-	2.30101	0.27600	1.74E-01
70	OEL	Gas	10:17	27.6	6.5	0	0.0024	0.00016	27.7	5.3	0	0.0019		0.00010	27.65	541.44	5.900	-	0.00215	0.00016	1.44E-04
71	OEL	Gas	14:58	27.8	8		0.0021	0.00017	27.9	6.5		0.000368	Υ	0.00002	27.85	541.80	7.250	-	0.0021	0.00017	1.72E-04
72	OEL	Gas	12:26	32.2	8.2	0	0.0122	0.00100	32.3	6.8	0	0.0212	Υ	0.00144	32.25	549.72	7.500	-	0.0167	0.00144	1.41E-03
73	OEL	Gas	10:20	26.7	6.4	0	0.0596	0.00381	26.6	5.6	0	0.0553	Υ	0.00310	26.65	539.64	6.000	-	0.0596	0.00381	4.02E-03
74	OEL	Gas	12:46	34.6	7.6	0	0.05	0.00380	34.8	6.3	0	0.3	Υ	0.01890	34.70	554.13	6.950	-	0.175	0.01890	1.37E-02
75	OEL	Gas	10:52	29.6	7	0	0.0023	0.00016	29.8	5.9	0	0.0015	Υ	0.00009	29.70	545.13	6.450		0.0019	0.00016	1.39E-04
76	OEL	Gas	11:10	30.7	6.9	0	0.14	0.00966	30.9	5.7	0	0.19		0.01083	30.80	547.11	6.300	-	0.165	0.01083	1.18E-02
77	OEL	Gas	9:28	17.4	8.1		0.0018	0.00015	17.6	6.8		0.0023	Υ	0.00016	17.50	523.17	7.450	-	0.0023	0.00016	1.95E-04
78	OEL	Gas	13:09	32.5	7.6	0	0.54	0.05000	32.7	6.3	0	0.54		0.05000	32.60	550.35	6.950	-	0.54	0.05000	4.26E-02
79	OEL	Gas	10:22	29.4	6.9	0	0.008	0.00600	29.5	5.7	0	0.09		0.00500	29.45	544.68	6.300	-	0.049	0.00600	3.50E-03
80	OEL	Gas	12:17	32.1	7	0	0.094	0.00658	32.3	5.7	0	0.08		0.00456	32.20	549.63	6.350	-	0.087	0.00658	6.27E-03
81	OEL	Gas	9:20	28.6	6.9	0.09	2.03	0.14000	29.1	6.0	0.09	1.69		0.14000	28.85	543.60	6.450		1.86	0.14000	1.35E-01
82	OEL	Gas	11:16	19	6.9	0.08	2.87	0.19300	19	5.4	0	3.41		0.18400	19.00	525.87	6.150	0.08		0.19300	2.33E-01
83	OEL	Gas	10:16	31	5.7	0	0.57	0.03249	31.2	4.6	0	0.52		0.02392	31.10	547.65	5.150	-	0.545	0.03249	3.17E-02
84	OEL	Gas	9:33	28.3	7.2	0	0.77	0.06000	28.5	5.9	0	0.93		0.06000	28.40	542.79	6.550	-	0.85	0.06000	6.33E-02
85	OEL	Gas	12:12	33.2	7.2	0.02	3.92	0.30000	33.4	6.5	0.03	3.45	.,	0.30000	33.30	551.61	6.850		3.685	0.30000	2.87E-01
86	OEL	Gas	13:29	26.6	7.9	0	0.3323	0.02625	26.8	6.3	0	0.3995	Y	0.02517	26.70	539.73	7.100	-	0.3995	0.02625	3.25E-02
87	OEL	Gas	14:17	27.3	7.4	0.00	1.027	0.07600	27.4	5.9	0.15	1.306	Y	0.07400	27.35	540.90	6.650	0.15	1.306	0.07600	9.86E-02
88 89	OEL OEL	Gas Gas	9:52 10:04	25.5 25.6	7.6 6.8	0.09	15.36	1.16100 0.02000	25.4	6.6 5.7	0.15	19.29 0.36		1.26300 0.02100	25.45 25.65	537.48 537.84	7.100 6.250	0.15	19.29 0.36	1.26300 0.02100	1.53E+00
90	OEL	Gas	9:16	20.6	7	0	0.29 2.08	0.02000	25.7 20.7	5.7 6.0	0	2.26		0.02100		537.84	6.500	-	2.26	0.02100	2.53E-02 1.65E-01
91	OEL	Gas	10:34	33.8	6.1	0	1.31	0.14600	33.9	5.1	0	1.55		0.13600	33.85	552.60	5.600	_	1.43	0.14600	9.03E-02
92	OEL	Gas	10:34	33.8	8.1	0	0.64	0.07991	33.9	6.8	0	0.77		0.07905	31.80	548.91	7.450	<u> </u>	0.705	0.05000	5.93E-02
93	OEL	Gas	9:06	23.2	8.1	0.1	3.28	0.03000	23.5	6.2	0.1	4.14		0.03000	23.35	533.70	7.450	-	3.71	0.26000	3.00E-01
94	Other	Gas	9:34	17.9	5.8	0.1	0.000059	0.26000	17.9	4.7	0.1	0.000267	Y	0.00001	17.90	523.89	5.250	_	0.000267	0.00001	1.59E-05
95	Other	Gas	11:12	25.2	6.9	0	0.000039	0.00001	25.3	6.2	0	0.000267	Y	0.00001	25.25	537.12	6.550		0.000267	0.00001	2.57E-05
96	Other	Gas	12:56	35	7.6	0	0.000198	0.00001	35.2	6.4	0	0.000348	T	0.00002	35.10	554.85	7.000	-	0.000348	0.00002	6.79E-05
97	Other	Gas	11:58	30.4	7.6	0	0.0038	0.00004	30.5	6.2	0	0.00114	Y	0.00007	30.45	546.48	6.800	-	0.00080	0.00007	2.32E-04
98	Other	Gas	14:19	24.3	8.1	-	0.0038	0.00028	24.3	6.7	"	0.0022	Y	0.00014	24.30	535.41	7.400	_	0.003	0.00028	8.46E-05
99	Other	Gas	12:42	32.9	7.4	0	0.001	0.00008	33.1	5.8	0	0.00085	ī	0.00006	33.00	551.07	6.600	-	0.001	0.00008	1.32E-04
100	Other	Gas	10:02	18.7	8.3	U	0.00104	0.00008	18.7	6.8	-	0.0023	Y	0.00013	18.70	525.33	7.550	-	0.00177	0.00013	1.13E-03
101	Other	Gas	10:02	17.6	7.2	0	0.011	0.00091	17.7	5.9	0	0.0132	1	0.00090	17.65	523.44	6.550	-	0.0132	0.00800	8.91E-03
102	Other	Gas	12:00	28.5	7.6	0	0.0213	0.00000	28.50	6.3	0	0.0213	Y	0.00000	28.50	542.97	6.950	-	0.12	0.00800	1.69E-03
103	Other	Gas	13:07	26.9	7.3	-	0.0213	0.00060	26.8	6.1	"	0.0213	Y	0.00062	26.85	540.00	6.700	<u> </u>	0.0213	0.00062	7.74E-04
103	Other	Gas	15.07	20.9	7.3	L	0.0082	0.00000	40.٥	O.T	<u> </u>	0.0101	ľ	0.00062	20.83	340.00	0.700	-	0.0101	0.00062	7.74E-U4

Appendix E for Descrip	otive Statistics for all leak																		
	Component Information					CANISTER DATA						TEDLAR BAG DATA						EPA METHOD TO-15 CONCENTRATION DATA	
Sort order, sorted by			CALCULATED	CALCULATED	CALCULATED										ppmv @ STP	ppmv @ STP	ppmv @ STP	ppmv @ STP	ppmv @ STP
Component Type, &																		58.079	78.112
Method 21 Concentration, ppmv		Service	Log10 TVA as CH4,	Log10 CH4 EmRate, kg/hr, as methane	Log10 TOC of Linked TOC Emissions Estimates, kg/hr	Sample #	Date	Time	Can ID	Can I-Vac (in Hg)	Can F-Vac (in Hg)	Sample(s) #	Date	Time	1,3,5-Trimethyl benzene	2-Hexanone	4-Ethyltoluene	Acetone	Benzene
	0 1 11 = 10 11=1	-0.4-0			2011110100) 1.8/ 111														
	Service with TVA, HiFlow,																		
52	-	Gas	3.18	-2.43															
53		Gas	3.23	-2.27															
54 55		Gas Gas	3.30 3.78	-2.19 -1.44															
56		Gas	3.85	-1.44															
57		Gas	4.43	-3.61															
58		Gas	5.06	-1.11	-1.16							TB-052A/TB-052B	Διισ-1/1-2015	12:35	ND	ND	ND	ND	ND
59		Gas	5.11	-2.96	-1.10							1B 032A/1B 032B	Aug 14 2013	12.55	IND	ND	ND	IND	ND
60		Gas	0.05	-4.76															
61		Gas	0.19	-4.85															
62		Gas	0.26	-4.82															
63		Gas	0.27	-4.90															
64	OEL	Gas	0.58	-4.68															
65	OEL	Gas	1.08	-3.89															
66		Gas	1.30	-3.89															
67		Gas	1.48	-3.61															
68		Gas	1.48	-3.10															
69		Gas	2.08	-0.76															
70		Gas	2.30	-3.84															
71		Gas	2.54	-3.77															
72		Gas	2.54	-2.85															
73		Gas	2.54	-2.40															
74		Gas	2.65	-1.86														***	
75		Gas	3.18	-3.86	-5.55							TB-047A/TB-047B	Aug-12-2015	11:54	ND	ND	ND	ND	ND
76		Gas	3.48	-1.93															
77 78		Gas	3.70 3.99	-3.71 -1.37	1.20							TD OF 2A /TD OF 2D	Aug-14-2015	14.00	ND	ND	ND	ND	ND
79		Gas Gas	4.00	-1.37	-1.39 -2.28							TB-053A/TB-053B TB-049A/TB-049B		14:09 11:23	ND ND	ND ND	ND ND	ND ND	ND ND
80		Gas	4.00	-2.46	-5.47									13:18	ND ND	ND ND	ND ND	ND ND	ND ND
81		Gas	4.41	-0.87	-5.47							1B-030A/1B-030B	Aug-13-2013	13.16	ND	ND	ND	ND	IND
82		Gas	4.76	-0.63															
83		Gas	4.92	-1.50															
84		Gas	4.95	-1.20	-5.36							TB-051A/TB-051B	Aug-14-2015	10:33	ND	ND	ND	3.90E+01	ND
85		Gas	4.95	-0.54	-1.53									13:03	ND	ND	ND	ND	ND
86		Gas	5.00	-1.49								·	Ŭ						
87		Gas	5.00	-1.01	-1.09							TB031A/TB031B	Feb-26-2015	14:20	ND	ND	ND	ND	2.30E+01
88	OEL	Gas	5.00	0.18															
89	OEL	Gas	5.48	-1.60															
90		Gas	5.60	-0.78															
91		Gas	5.62	-1.04	-1.19							TB-042A/TB-042B		11:35	ND	ND	ND	3.40E+01	1.30E+02
92		Gas	5.70	-1.23	-5.76							TB045A/TB045B			ND	ND	ND	ND	ND
93		Gas	5.70	-0.52	-2.31							TB-046A/TB046B	Aug-12-2015	10:10	ND	ND	ND	ND	1.10E+01
94		Gas	1.04	-4.80															
95		Gas	1.30	-4.59															
96		Gas	1.48	-4.17															
97		Gas	1.83	-3.64															
98 99		Gas	1.85	-4.07	E EC							TD 0424/TD 0425	Aug 07 3015	12:20	ND	ND	ND	4.205.04	ND
100		Gas Gas	1.95 2.48	-3.88 -2.95	-5.56							TB-043A/TB-042B	Aug-07-2015	13:39	ND	ND	ND	4.30E+01	ND
101		Gas	2.48	-2.95	-2.22	CAN001	lan_20_201E	0.452083333	OFC-117-20	28 5	0	TB001	Jan-20-2015	10:55	ND	ND	ND	ND	ND
102		Gas	2.55	-2.77	-2.22	CANOUI	Juli-20-2013	0.432003333	JLC-117-39	20.3	U	10001	Jan-20-2013	10.55	IND	IND	IVD	IND	ND
103		Gas	2.77	-3.11															
103	Guici	3	2.//	-5.11															

	tive Statistics for all lea Component Information																	METHOD TO-15 Calculate	d Fmissions		METHOD TO-15 Calcu	lated Emission	ns
_	component iniormation		ppmv @ STP	ppmv @ STP	nnmy @ STD	ppmv @ STP	nnmy @ STD	ppmv @ STP	nnmy @ STD	ppmv @ STP	ppmv @ STP	nnmy @ STD	ppmv @ STP	nnmy @ STE	P ppmv @ STP	ppmv @ STP	ppmv @ STP	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr
Sort order, sorted by			76.139	ррппу ш этг	84.16	46.068	88.11	106.165	100.21	ррии @ этг	86.18	60.1	100.16	92.14	105	131.4	106.165	120.19	120.19	100.16	120.1916	58.079	78.112
Component Type, &			70.133		04.10	40.000	00.11	100.103	100.21		00.10	00.1	100.10	32.14	103	131.4	100.103	120.13	120.13	100.10	120.1310	36.073	70.112
Method 21	Component Type	Service								Hexachlorobuta		Isopropyl	Methyl Isobutyl		TPH Gasoline	Trichloroethene	Xylenes	1,2,4-Trimethyl-	1,3,5-Trimethyl-				
Concentration, ppmv			Carbon disulfide	Chlorobenzene	Cyclohexane	Ethanol	Ethyl Acetate	Ethylbenzene	Heptane		Hexane	Isopropyl		Toluene				•		2-Hexanone	4-Ethyltoluene	Acetone	Benzene
,,,,								•		diene		alcohol	Ketone		(C4-C12)	(TCE)	(total)	benzene	benzene		,		
A. Camarana anta in Can	Complete with TMA HIELD	TO 15																					
52	Service with TVA, HiFlo Flange																						
53	Flange	Gas Gas																					
54	Flange	Gas																					
55	Flange	Gas																					
56	Flange	Gas																					
57	Flange	Gas																					
58	Flange	Gas	ND	ND	1.70E+01	ND	ND	4.20E+01	6.90E+01	ND	3.00E+01	ND	ND	1.50E+02	ND	ND	3.00E+02			_	_	_	_
59	Flange	Gas	IND	ND	1.701+01	ND	ND	4.20L+01	0.90L+01	ND ND	3.00L+01	ND	ND	1.30L+02	ND	IND	3.00L+02	-	-	_	-	_	_
60	OEL	Gas																					
61	OEL	Gas																					
62	OEL	Gas																					
63	OEL	Gas																					
64	OEL	Gas																					
65	OEL	Gas																					
66	OEL	Gas																					
67	OEL	Gas																					
68	OEL	Gas																					
69	OEL	Gas																					
70	OEL	Gas																					
71	OEL	Gas																					
72	OEL	Gas																					
73	OEL	Gas																					
74	OEL	Gas																					
75	OEL	Gas	9.70E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.30E+01	ND	ND	2.40E+01	-	-	-	-	-	-
76	OEL	Gas	002											0.000									
77	OEL	Gas																					
78	OEL	Gas	ND	ND	3.90E+02	ND	ND	ND	ND	ND	7.40E+01	ND	ND	ND	2.10E+04	ND	ND	-	-	-	-	-	-
79	OEL	Gas	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-
80	OEL	Gas	ND	ND	ND	6.10E+01	1.30E+01	ND	ND	ND	ND	1.50E+01	ND	3.20E+01		ND	ND	-	-	-	-	-	-
81	OEL	Gas																					
82	OEL	Gas																					
83	OEL	Gas																					
84	OEL	Gas	ND	ND	ND	7.00E+01	1.70E+01	ND	ND	ND	ND	2.60E+01	ND	1.30E+01	ND	ND	ND	-	-	-	-	1.0220E-06	-
85	OEL	Gas	ND	ND	1.30E+01	ND	ND	ND	1.90E+01	ND	4.40E+01	2.30E+01	ND	ND	ND	ND	9.40E+00	-	-	-	-	-	-
86	OEL	Gas																					
87	OEL	Gas	ND	ND	9.20E+01	7.40E+01	ND	ND	5.70E+01	ND	1.00E+02	ND	ND	2.30E+01	ND	ND	1.10E+01	-	-	-	-	-	8.2476E-07
88	OEL	Gas																					
89	OEL	Gas																					
90	OEL	Gas																					
91	OEL	Gas	ND	ND	4.10E+01	6.80E+01	ND	1.70E+01	3.30E+01	ND	5.10E+01	1.00E+01	1.00E+01	7.60E+01		ND	9.00E+01	8.1344E-07	-	-	-	7.4248E-07	3.8181E-06
92	OEL	Gas	ND	ND	ND	ND	ND	ND	ND	ND	8.40E+00	ND	ND	1.30E+01		ND	1.40E+01	-	-	-	-	-	-
93	OEL	Gas	ND	ND	2.90E+01	3.60E+01	ND	ND	2.80E+01	ND	5.80E+01	1.30E+01	ND	ND	3.40E+03	ND	ND		-	-	-	-	4.2753E-07
94	Other	Gas																					
95	Other	Gas																					
96	Other	Gas																					
97	Other	Gas																					
98	Other	Gas																					
99	Other	Gas	ND	ND	ND	4.60E+01	ND	ND	ND	ND	ND	ND	1.60E+01	ND	ND	ND	ND	<u> </u>	-	-	-	1.1094E-06	-
100	Other	Gas																					
101	Other	Gas	ND	ND	4.00E+01	ND	ND	ND	ND	ND	4.40E+01	ND	ND	ND	4.80E+03	ND	ND	<u> </u>	-	-	-	-	-
102	Other	Gas																					
103	Other	Gas																					

Appendix E for Descri	ptive Statistics for all leak	<u> </u>																			
	Component Information																ASTM 1945/3588 Concentration Data				
ort order, sorted by			kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr					
			76.139	112.56	84.16	46.068	88.11	106.165	100.21	86.18	60.1	100.16	92.14	105	131.4	106.165					
Component Type, &																					
Method 21	Component Type	Service			l						Isopropyl	Methyl Isobutyl		TPH Gasoline	Trichloroethene		Oxygen	Oxygen	Nitrogen	Nitrogen	Hydrogen
Concentration, ppmv			Carbon disulfide	Chlorobenzene	Cyclohexane	Ethanol	Ethyl Acetate	Ethylbenzene	Heptane	Hexane	alcohol	Ketone	Toluene	(C4-C12)	(TCE)	Xylenes (total)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)
											4.0001			(0.012)	(1.62)		((PP=)	()	(PP=)	(,
A. Components in Ga	s Service with TVA, HiFlov	v. TO-15 &																			
52	Flange	Gas																			
53	Flange	Gas																			
54	Flange	Gas									_										
55	Flange	Gas									_										
56	Flange	Gas																			_
57	Flange	Gas																			_
58					C 4003E 07			2.02275.00	2.42665.06	1 17205 06			C 2000E 00			1 44405 05	2.44565+04	2.11565.00	7.7864E+01	7.7864E+08	4
	Flange	Gas		-	6.4902E-07	-	-	2.0227E-06	3.13bbE-Ub	1.1/28E-06		-	6.2696E-06	-	-	1.4448E-05	2.1156E+01	2.1156E+08	7.7864E+U1	7.7864E+08	
59	Flange	Gas																			
60	OEL	Gas																			
61	OEL	Gas																			
62	OEL	Gas																			
63	OEL	Gas																			4
64	OEL	Gas																			
65	OEL	Gas																			
66	OEL	Gas																			4
67	OEL	Gas																			
68	OEL	Gas																			
69	OEL	Gas																			
70	OEL	Gas																			
71	OEL	Gas																			
72	OEL	Gas																			
73	OEL	Gas																			
74	OEL	Gas																			
75	OEL	Gas	3.2663E-07	-	-	-	-	-	-	-			1.3447E-06	-	-	1.1268E-06	2.1194E+01	2.1194E+08	7.8773E+01	7.8773E+08	
76	OEL	Gas																			
77	OEL	Gas																			
78	OEL	Gas	-	-	1.5488E-05	-	-	-	-	3.0092E-06			-	1.0404E-03	-	-	2.1175E+01	2.1175E+08	7.8276E+01	7.8276E+08	
79	OEL	Gas	-	-	-	-	_	_	-	_			-	_	_	-	2.1290E+01	2.1290E+08	7.8601E+01	7.8601E+08	1
80	OEL	Gas	-	-	-	1.2115E-06	4.9381E-07	-	-	-	3.8865E-07	-	1.2711E-06	-	-	-	2.1314E+01	2.1314E+08	7.8655E+01	7.8655E+08	
81	OEL	Gas																	110000		
82	OEL	Gas																			
83	OEL	Gas																			
84	OEL	Gas	_	_	_	1 4550F-06	6.7583E-07	_	_	_	7.0504E-07	_	5.4045E-07	-	_	_	2.1389E+01	2.1389E+08	7.8581E+01	7.8581E+08	
85	OEL	Gas	-	_	5.0749E-07		-	-	8.8317F-07	1.7589E-06		-		_	-	4.6290E-07	2.1096E+01	2.1096E+08		7.8459E+08	
86	OEL	Gas			3.07 /32 07				5.55171 07	2.73332 00	52102 07						2.10302.01	2.20002.00	7.0.552.01	7.0.332.08	
87	OEL	Gas	_	_	3 5545F-06	1.5650E-06	_	_	2.6222E-06	3 9563F-06			9.7287E-07	_	-	5.3611E-07	2.1346E+01	2.1346E+08	7 7524F+01	7.7524E+08	
88	OEL	Gas	_	-	3.33-3E 00	1.30301 00	_	_	2.02221 00	3.33031 00		_	3.72372 07	_	-	3.3011L 07	2.15-701-101	2.13-701-08	7.75242101	7.75242108	
89	OEL	Gas																			
90	OEL	Gas																			
91	OEL	Gas			1.2974E-06	1.1779E-06		6.7861E-07	1 24245 00	1 65365 00	2.2598E-07	3.7660E-07	2.6330E-06	1.5397E-04		3.5926E-06	2.1312E+01	2.1312E+08	7.7606E+01	7.7606E+08	
92	OEL	Gas	-	-	1.23/46-06	1.1//9E-06	-	0.7001E-U/	1.2434E-06	3.6504E-07	Z.ZJ98E-U/	3./UOUE-U/	6.0401E-07		-	7.4948E-07	2.1312E+01 2.1385E+01	2.1312E+08 2.1385E+08	7.7606E+01 7.8584E+01	7.7606E+08 7.8584E+08	+
		_	-	-	1 21445 00	9 25205 07	-	<u> </u>	1 20615 06		2 00755 07	<u> </u>	0.0401E-07		-	7.4348E-U/					+
93	OEL	Gas	-	-	1.2144E-06	8.252UE-U/	-	-	1.3961E-06	2.4871E-06	3.8875E-07	-	-	1.7763E-04	-	-	2.1192E+01	2.1192E+08	7.8709E+01	7.8709E+08	
94	Other	Gas																			4
95	Other	Gas																			
96	Other	Gas																			
97	Other	Gas																			4
98	Other	Gas																			4
99	Other	Gas	-	-	-	9.4137E-07	-	-	_	-		- 7.1189E-07	-	-	-	-	2.1485E+01	2.1485E+08	7.8490E+01	7.8490E+08	
100	Other	Gas																			
101	Other	Gas	-	-	1.5714E-06	-	<u> </u>	-		1.7700E-06	1 .		-	2.3526E-04	-	-	2.1394E+01	2.1394E+08	7.8483E+01	7.8483E+08	1
102	Other	Gas																			
103	Other	Gas																			

Appendix E for Descri	ptive Statistics for all lea	k																								
	Component Information																		ASTM 1945/3588 Concentration Data			ASTM 1945/3588 Emissions (kg/h)			
Sort order, sorted by																										
Component Type, &																						31.9988	28.0134	2.01	28.0106	44.01
Method 21	Component Type	Service		Carbon	Carbon	Carbon	Carbon																			
Concentration, ppmv	component type	Scrvice	Hydrogen	Dioxide	Dioxide		Monoxid	Methane	Methane	Ethane	Ethane	Propane	Propane	i-Butane	i-Butane	n-Butane	n-Butane	i-Pentane	i-Pentane	n-Pentane	n-Pentane	Oxygen	Nitrogen	Hydrogen	Carbon	Carbon
concentration, ppinv			(ppb)	(Mol%)	(ppb)	(Mol%)		(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	o.vyge	· · · · · · · · · · · · · · · · · · ·	,u.oge	Monoxide	Dioxide
				(1410170)	(pps)	(1410170)	(pps)																			
	s Service with TVA, HiFlo																									
52	Flange	Gas																								
53	Flange	Gas																								
54	Flange	Gas																								
55 56	Flange	Gas Gas						+																		
57	Flange Flange	Gas																								
58	Flange	Gas		1 0678E-02	1.9678E+05	_		0 6022E-01	9.6032E+06	_	_			-		_	_		-		_	3.0709E+00	9.8948E+00	_	_	3.9287E-03
59	Flange	Gas	_	1.9078L-02	1.30781+03			9.0032L-01	3.0032L+00	_	-		_	_		_	_				_	3.0709E+00	3.8348L100	_	-	3.3287L-03
60	OEL	Gas				_		+											 							
61	OEL	Gas																								
62	OEL	Gas																								
63	OEL	Gas																								
64	OEL	Gas																								
65	OEL	Gas																								
66	OEL	Gas																								
67	OEL	Gas																								
68	OEL	Gas																								
69	OEL	Gas																								
70	OEL	Gas																								
71	OEL	Gas																								
72 73	OEL	Gas																								
73	OEL OEL	Gas Gas																								
75	OEL	Gas		2 22205 02	3.3228E+05																	2.9992E+00	9.7592E+00			6.4674E-03
76	OEL	Gas	_	3.3228L-02	3.3220L+03				-	_	-		_	_		_	_				_	2.9992E+00	3.7332L+00	_	-	0.4074L-03
77	OEL	Gas				_		+											 							
78	OEL	Gas	-	2.3679F-02	2.3679E+05	-		- 5.2555E-01	5.2555E+06	-	-			-	-	-	-		-		-	3.1972E+00	1.0347E+01	-	-	4.9173E-03
79	OEL	Gas	-		3.1813E+05			- 7.6615E-02		-	-	-	-	-	-	-	-	-		-	-	2.9423E+00	9.5098E+00	-	-	6.0468E-03
80	OEL	Gas		3.1149E-02	3.1149E+05	-		-		-	-	-	-	-	-	-	-	-		-	-	2.9402E+00	9.4991E+00	-	-	5.9099E-03
81	OEL	Gas																								
82	OEL	Gas																								
83	OEL	Gas																								
84	OEL	Gas	-		2.9746E+05			-		-	-	-	-	-	-	-	-	-	-	-	-	3.0881E+00	9.9323E+00	-	-	5.9067E-03
85	OEL	Gas	-	4.4500E-02	4.4500E+05	_		- 4.0034E-01	4.0034E+06	_	-		-	-	_	-	_		- -		-	3.1312E+00	1.0195E+01	-	-	9.0844E-03
86	OEL	Gas		2.4000= 0-	2 40005 55			4.00===	4.005 15.05													2.42575.00	0.000== 0=			7.04025.25
87 88	OEL OEL	Gas Gas	-	3.4890E-02	3.4890E+05	-		- 1.0954E+00	1.0954E+07	-	-	-	-	-	-	-	-	-	-	-	-	3.1357E+00	9.9697E+00	-	-	7.0492E-03
88 89	OEL	Gas							_																	
90	OEL	Gas																								
91	OEL	Gas		2.4412E-02	2.4412E+05			- 1.0574E+00	1.0574E+07	_	-			-	_	-	-		-		_	2.5642E+00	8.1742E+00	_	-	4.0396E-03
92	OEL	Gas	-	3.0608E-02	3.0608E+05			- 1.03/41700	- 1.03/4LT0/		-	—		-	-	-	-	—	-	 	-	3.4506E+00	1.1101E+01	-	-	6.7925E-03
93	OEL	Gas	-	3.9909E-02				5.9749E-02	5.9749E+05	-	-	-		-	-	-	-	-		-	-	3.3741E+00	1.0971E+01	-	-	8.7394E-03
94	Other	Gas																					-			
95	Other	Gas																								
96	Other	Gas																								
97	Other	Gas																								
98	Other	Gas																								
99	Other	Gas	-	2.4825E-02	2.4825E+05	-		-	-	-	-			-	-	-	-		-	-	-	3.0540E+00	9.7675E+00	-	-	4.8533E-03
100	Other	Gas																								
101	Other	Gas	-	4.5725E-02	4.5725E+05		<u> </u>	- 7.7614E-02	7.7614E+05	-	-	-	-	-	-	-	-	-	-	-	-	3.1955E+00	1.0263E+01	-	-	9.3934E-03
102	Other	Gas																								
103	Other	Gas																								

Note: results with all values = zero are hidden, see

Appendix E for Descriptive Statistics for all leak

Appendix E for Descrip	tive Statistics for all leak	1								_
	Component Information		1 /1	1 /1	1 /1	1 /1	1 /1	1 //	1 //	1 /1
Sort order, sorted by			kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr
Component Type, &			16.043	30.07	44.097	58.123	58.123	72.15	72.15	CALCULATED
Method 21	Component Type	Service								TOC, kg/hr
Concentration, ppmv			Methane	Ethane	Propane	i-Butane	n-Butane	i-Pentane	n-Pentane	(does not incl.
										TPH)
A. Components in Gas	Service with TVA, HiFlow,	TO-15 &								
52	Flange	Gas								
53	Flange	Gas								
54	Flange	Gas								
55	Flange	Gas								
56	Flange	Gas								
57	Flange	Gas								
58	Flange	Gas	6.9888E-02	1	-	-	-	-	-	6.9916E-02
59	Flange	Gas								
60	OEL	Gas								
61	OEL	Gas								
62	OEL	Gas								
63	OEL	Gas								
64	OEL	Gas								
65	OEL	Gas								
66 67	OEL	Gas								
68	OEL OEL	Gas Gas								
69	OEL	Gas								
70	OEL	Gas								
71	OEL	Gas								
72	OEL	Gas								
73	OEL	Gas								
74	OEL	Gas								
75	OEL	Gas	-	-	-	-	-	-	-	2.7982E-06
76	OEL	Gas								
77	OEL	Gas								
78	OEL	Gas	3.9785E-02	ı	-	-	-	-	-	4.0844E-02
79	OEL	Gas	5.3085E-03	-	-	-	-	-	-	5.3085E-03
80	OEL	Gas	-	-	-	-	-	-	-	3.3651E-06
81	OEL	Gas								
82	OEL	Gas								
83	OEL	Gas								
84	OEL	Gas	2.07045.02	-	-	-	-	-	-	4.3983E-06
85 86	OEL OEL	Gas	2.9791E-02	-	-	-	-	-	-	2.9796E-02
87	OEL	Gas Gas	8.0678E-02	-		_	-		_	8.0692E-02
88	OEL	Gas	8.0078E-02	-	-	-	-	-	-	8.0092E-02
89	OEL	Gas								
90	OEL	Gas								
91	OEL	Gas	6.3785E-02	-	-	_	-	-		6.3958E-02
92	OEL	Gas	-	-	-	-	-	-	-	1.7185E-06
93	OEL	Gas	4.7695E-03	-	-	-	-	-	-	4.9539E-03
94	Other	Gas								
95	Other	Gas								
96	Other	Gas								
97	Other	Gas								
98	Other	Gas								
99	Other	Gas	-	-	-	-	-		-	2.7627E-06
100	Other	Gas								
101	Other	Gas	5.8122E-03	-	-	-	-	-	-	6.0508E-03
102	Other	Gas								
103	Other	Gas								

10	Component Information							METEOROLOGY				METEOROLOG
	component information							WILTEOROLOGI	1			IVILILOROLOG
Sort order, sorted by Component Type, & Method 21 Concentration, ppmv	Component Type	Service	DATE	REGULATORY IDs	#WELLS	FACILITY TYPE: (OIL/GAS)	THROUGHPUT(s)	WIND	WIND	AMBIENT TEMPERATURE	% PH	BAROMETRI PRESSURE
Concentration, ppinv			DAIL	REGULATORTIDS	#WEEES	TACILITY III E. (OIL) GAS)	Timoddiii d (s)	FROM	(mph)	(F)	/0 1411	(inHg)
104	Other	Gas	7-Aug-15		3 + 1 inactive	Gas	19-10: 17.8 MCF/24-1: 18.8 MCF/19.8: 142.4 MCF	E	7	73.4	56.1	29.74
105	Other	Gas		SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	3	60	31	30.14
106	Other	Gas	24-Feb-15	SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
107	Other	Gas		SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
108	Other	Gas		SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	1.3	46	50	29.93
109	Other	Gas		SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	1.3	46	50	29.93
110	Other	Gas		TITLE V 041	0	Gas	OO 4 NACE/DAY	WSW	1.3	77.8 52.5	47.9	29.68
111 112	Other Other	Gas Gas	23-Feb-15 23-Jan-15	SEC.9 T-19N R-2W	1 12	Gas Oil	88.1 MCF/DAY 87 bbls/day Oil, 400-500 bbls/day Water	NNW SSE	15.9 2.1	65.5	23.1 36.9	29.98 30.17
113	Other	Gas		SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N N	3	60	31	30.17
114	Other	Gas		SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
115	Other	Gas		SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
116	Other	Gas		Permit Application 171984 EPA ID	2	Oil	5 bbls/day Oil, 50 bbls/day water	SSW	1.9	73.6	48.2	30.12
117	Other	Gas	25-Feb-15	SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	3	60	31	30.14
118	Other	Gas		SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
119	Other	Gas		TITLE V 041	0	Gas		WSW	1.3	77.8	47.9	29.68
120	Other	Gas		SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	3	60	31	30.14
121	Other	Gas		TITLE V 041	0	Gas		WSW	4	81.3	34.5	29.5
122 123	Other Other	Gas Gas	28-Jan-15 27-Jan-15	TITLE V 041	0	Gas		WSW	1.5	77.8	47.9	29.6 29.68
124	Other	Gas		SEC.9 T-19N R-2W	1	Gas Gas	88.1 MCF/DAY	WSW NNW	15.9	52.5	23.1	29.08
125	Other	Gas		SEC.9 T-19N R-2W	1	Gas	88.1 MCF/DAY	NNW	15.9	52.5	23.1	29.98
126	Other	Gas		SEC.9 T-19N R-2W	1	Gas	88.1 MCF/DAY	NNW	15.9	52.5	23.1	29.98
127	Other	Gas	6-Aug-15	520.5 1 25.1 N 2.1	2	Gas	96.25 SCFM	W	2.9	89.9	27.7	29.74
128	Valve	Gas	23-Jan-15	149797	12	Oil	87 bbls/day Oil, 400-500 bbls/day Water	SSE	2.1	65.5	36.9	30.17
129	Valve	Gas	23-Jan-15	149797	12	Oil	87 bbls/day Oil, 400-500 bbls/day Water	SSE	2.1	65.5	36.9	30.17
130	Valve	Gas		TITLE V 041	0	Gas		SW	4.2	77.8	27.6	29.63
131	Valve	Gas		TITLE V 041	0	NG	4063 mcf/day	East	3	79.8	21.9	29.37
132	Valve	Gas	22-Jan-15		10	Oil	150 bbls/day Oil, 1000 bbls/day Water	ESE	1.7	76.3	41.8	30.14
133	Valve	Gas		TITLE V 041	0	NG	4063 mcf/day	East	3	79.8	21.9	29.37
134 135	Valve Valve	Gas Gas	22-Jan-15	SEC.9 T-19N R-2W	10	Oil Gas	150 bbls/day Oil, 1000 bbls/day Water 88.1 MCF/DAY	ESE NNW	1.7 15.9	76.3 52.5	41.8 23.1	30.14 29.98
136	Valve	Gas		TITLE V 041	0	Gas	66.1 IVICE/DAT	WSW	1.3	77.8	47.9	29.68
137	Valve	Gas	23-Jan-15		12	Oil	87 bbls/day Oil, 400-500 bbls/day Water	SSE	2.1	65.5	36.9	30.17
138	Valve	Gas	29-Jan-15		0	Gas	or suisfacty on, 400 300 suisfacty water	WSW	4	81.3	34.5	29.5
139	Valve	Gas		TITLE V 041	0	Gas		WSW	4	81.3	34.5	29.5
140	Valve	Gas	27-Jan-15	TITLE V 041	0	Gas		WSW	1.3	77.8	47.9	29.68
141	Valve	Gas	28-Jan-15		0	Gas		WSW	1.5	-	-	29.6
142	Valve	Gas		TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
143	Valve	Gas	29-Jan-15		0	Gas		WSW	4	81.3	34.5	29.5
144	Valve	Gas		TITLE V 041	0	Gas		WSW	1.5	- 01.2	- 24.5	29.6
145 146	Valve Valve	Gas Gas		TITLE V 041	0	Gas		WSW	1.5	81.3	34.5	29.5 29.6
146	Valve	Gas		TITLE V 041 SEC.33 T-20N R-2W	4	Gas Gas	140.9MCF/DAY	WSW N	1.3	46	50	29.6
147	Valve	Gas	11-Aug-15	320.33 1 2014 IV 244	1	Gas	33-34-2:140.5, 33-34-1:75.9 MCF/D	W	3.6	86.1	46.5	29.78
149	Valve	Gas		TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
150	Valve	Gas	11-Aug-15		2	Gas	14-1:492, 14-4: 101.9, 14-1: 36.4, Mobil: 913.2 MCF/D	W	3.6	85.1	46.5	28.78
151	Valve	Gas	25-Feb-15	SEC.33 T-20N R-2W	4	Gas	140.9MCF/DAY	N	3	60	31	30.14
152	Valve	Gas		SEC.33 T-20N R-2W	2	Gas	2098.5MCF/DAY	N	17.9	80.2	23.7	29.7
153	Valve	Gas		TITLE V 041	0	NG	4063 mcf/day	East	3	79.8	21.9	29.37
154	Valve	Gas		TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
155	Valve	Gas		SEC.33 T-20N R-2W	5	Gas	1252.4MCF/DAY	W	3.1	57.4	24.5	30.2
156	Valve	Gas		Not Posted	2	Gas	Meter Not Available	S	7.5	69.5	38.7	29.64
157	Valve	Gas		TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
158 159	Valve	Gas		TITLE V 041	0 1	Gas Gas	0 SCFM	WSW W	1.5 5.2	88.5	52.7	29.6 29.73
123	Valve	Gas	6-Aug-15		1	Gas Gas	0 SCFM	W	5.2	5.86	52.7	29.73

Note: results with all values = zero are hidden, see

Y [2] = Y, Avanti Y [3] = Y, Operator run with Eagle Y [4] = Y, Operator run with Eagle quarterly Y [5] = Y, Quarterly, Summit

Note: results with all v	alacs - zero are maacii, se	-			i [4] - i, Operator
Appendix E for Descrip	tive Statistics for all leak				Y [5] = Y, Quarterly,

	ive Statistics for all leak			_	Tan at			Y [5] = Y, Quarterly, Summit						T-	
<u> </u>	Component Information				Site Characterization	1			Component Information	IR CAMERA		EPA Method 21 Results		H	IGH FLOW SAMPLER DATA
Sort order, sorted by Component Type, & Method 21 Concentration, ppmv	Component Type	Service		WEATHER (sunny, cloudy, fair, fog, haze, light rain, heavy rain)	# SEPARATORS	# TANKS	# COMPRESSORS	DOES SITE HAVE LDAR PLAN? (Y/N)	Description	Date	Time	Date	Time	Method 21 Leak Concentration, ppmv	Date
104	Other	Gas	80	Cloudy/overcast	1	5	1	N	Pneumatic Liq Level Controller			7-Aug-15	11:21	670.00	7-Aug-15
105	Other	Gas	70	Cloudy	4	7	2	N	Gas regulator on Dehydrator P32 V10870	-	-	Feb-25-2015	14:11	800.00	Feb-25-2015
106	Other	Gas	0	sunny	4	5	1	N	Gas Regulator at compressor	Feb-23-2015	0.611111111	Feb-24-2015	14:02	2,000.00	Feb-24-2015
107	Other	Gas	0	sunny	4	5	1	N .	Gas Regulator at compressor	Feb-23-2015	0.623611111	Feb-24-2015	14:14	3,500.00	Feb-24-2015
108 109	Other Other	Gas Gas	10 10	sunny	4	7	2 2	N N	PRV Weep hole on compressor V4016E norriseal level controller on V4016E at compressor	-	-	Feb-26-2015 Feb-26-2015	9:18 9:12	4,000.00 4,000.00	Feb-26-2015 Feb-26-2015
110	Other	Gas	10 / 90 / 50/ 98	sunny	4		2	Y [3]	Senior Daniels Flow Meter on Heater	Jan-27-2015	0.381944444	Jan-27-2015	12:38	7,800.00	Jan-27-2015
111	Other	Gas	10 / 90 / 30 / 98	sunny	1	1	2	N	Gas Regulator	Feb-23-2015	0.4375	Feb-23-2015	12:25	9.000.00	Feb-23-2015
112	Other	Gas	0	Sunny	1	3	2	Y [2]	West Side Compressor Seal	Jan-23-2015	-	Jan-23-2015	12:07	10,100.00	Jan-23-2015
113	Other	Gas	70	Cloudy	4	7	2	N N	Temperature controller on reboiler D6	-	-	Feb-25-2015	13:01	10,700.00	Feb-25-2015
114	Other	Gas	0	sunny	4	5	1	N	Gas Regulator P53	Feb-23-2015	0.625694444	Feb-24-2015	10:27	12,000.00	Feb-24-2015
115	Other	Gas	0	sunny	4	5	1	N	Pressure meter on separator 11118	-	-	Feb-24-2015	10:52	15,600.00	Feb-24-2015
116	Other	Gas	60	Cloudy	2	2	0	Y [2]	Inactive Flare Pilots	Jan-22-2015	0.595138889	Jan-22-2015	14:45	18,000.00	Jan-22-2015
117	Other	Gas	70	Cloudy	4	7	2	N	Temperature controller on reboiler D6	-	-	Feb-25-2015	12:57	27,500.00	Feb-25-2015
118	Other	Gas	0	sunny	4	5	1	N	Vent at compressor	Feb-23-2015	15:13	Feb-24-2015	14:23	50,000.00	Feb-24-2015
119	Other	Gas	10 / 90 / 50/ 98	sunny			_	Y [3]	Pig receiver	-	-	Jan-27-2015	14:36	65,300.00	Jan-27-2015
120	Other	Gas	70	Cloudy	4	7	2	N	level control on compressor	-	-	Feb-25-2015	14:48	100,000.00	Feb-25-2015
121	Other	Gas	50	light cloudy				Y [3]	Senior Daniels Flow Meter	Jan-29-2015	9:55	Jan-29-2015	11:00	100,001.00	Jan-29-2015
122 123	Other Other	Gas	90	cloudy				Y [3]	Senior Daniels Flow Meter PRV Weep hole	Jan-28-2015 Jan-27-2015	9:15 11:10	Jan-29-2015 Jan-27-2015	10:31 13:50	104,501.00 115,600.00	Jan-29-2015 Jan-27-2015
123	Other	Gas Gas	10 / 90 / 50 / 98	sunny	1	1	2	Y [3] N	Fittings on pressure gauge	JdII-27-2015	-	Feb-23-2015	12:06	130,001.00	Feb-23-2015
125	Other	Gas	10	sunny	1	1	2	N N	Fittings on pressure gauge		-	Feb-23-2015	11:34	130,001.00	Feb-23-2015
126	Other	Gas	10	sunny	1	1	2	N N	Fittings on pressure gauge on vessel V-2019	_	-	Feb-23-2015	12:01	130,001.00	Feb-23-2015
127	Other	Gas	60	Sunny	2	2	1	N	Regulator			6-Aug-15	13:51	500,001.00	6-Aug-15
128	Valve	Gas	0	Sunny	1	3	2	Y [2]	Valve of Avanti 013698	-	-	Jan-23-2015	11:08	1.98	Jan-23-2015
129	Valve	Gas	0	Sunny	1	3	2	Y [2]	Gauge valve 1/2" on sight glass	-	-	Jan-23-2015	11:18	3.20	Jan-23-2015
130	Valve	Gas	100	Cloudy	0	0	1	Y [1]	4" valve	-	-	Jan-26-2015	14:10	12.00	Jan-26-2015
131	Valve	Gas	95	Cloudy	0	1	2	Y [1]	6" Gate	-	-	Jan-26-2015	12:27	18.00	Jan-26-2015
132	Valve	Gas	50	Sunny	15	5	4	Y [2]	10" Valve	-	-	Jan-22-2015	11:54	50.00	Jan-22-2015
133	Valve	Gas	95	Cloudy	0	1	2	Y [1]	Ball 1"	-	-	Jan-26-2015	11:25	65.00	Jan-26-2015
134	Valve	Gas	50	Sunny	15	5	4	Y [2]	on compressor	-	-	Jan-22-2015	11:26	72.00	Jan-22-2015
135 136	Valve Valve	Gas Gas	0.1	sunny	1	1	2	N Y[3]	Control Valve Stem	-	-	Feb-23-2015 Jan-27-2015	12:10 14:30	300.00 320.00	Feb-23-2015 Jan-27-2015
137	Valve	Gas	0	sunny Sunny	1	3	2	Y [3] Y [2]	3 inch plug valve	-	-	Jan-23-2015 Jan-23-2015	11:59	329.00	Jan-23-2015
138	Valve	Gas	50	light cloudy	-	,	2	Y [3]	6" Ball Valve		-	Jan-29-2015	12:55	620.00	Jan-29-2015
139	Valve	Gas	50	light cloudy				Y [3]	Control Valve			Jan-29-2015	10:45	750.00	Jan-29-2015
140	Valve	Gas	10 / 90 / 50 / 98	sunny				Y [3]	2"	-	-	Jan-27-2015	14:49	800.00	Jan-27-2015
141	Valve	Gas	90	cloudy				Y [3]	1"	-	-	Jan-28-2015	14:01	940.00	Jan-28-2015
142	Valve	Gas	90	cloudy				Y [3]	2" Gate	-	-	Jan-28-2015	12:42	1,200.00	Jan-28-2015
143	Valve	Gas	50	light cloudy				Y [3]	Control Valve	-	-	Jan-29-2015	11:23	1,400.00	Jan-29-2015
144	Valve	Gas	90	cloudy	ļ	1		Y [3]	1" Gate	-	-	Jan-28-2015	13:06	1,800.00	Jan-28-2015
145	Valve	Gas	50	light cloudy		1		Y [3]	6" Ball Valve	-	-	Jan-29-2015	12:48	2,300.00	Jan-29-2015
146	Valve	Gas	90	cloudy		+	_	Y [3]	1" Ball	-	-	Jan-28-2015	14:21	3,100.00	Jan-28-2015
147 148	Valve Valve	Gas	10	sunny	3	7	2	N N	1/2"at wellhead 60-24	-	-	Feb-26-2015	14:05 12:49	3,300.00 13,280.00	Feb-26-2015
148	Valve	Gas Gas	15 90	Sunny	3	1	1	Y [3]	Control Valve 2" @ spherical separator 1" Gate	_	_	11-Aug-15 Jan-28-2015	13:38	20.100.00	11-Aug-15 Jan-28-2015
150	Valve	Gas	15	Sunny	2	3	1	Y [3] N	Control Valve 3-inch		-	11-Aug-15	11:46	23,240.00	11-Aug-15
151	Valve	Gas	70	Cloudy	4	7	2	N N	Kimray Level Controller on V11251	-	-	Feb-25-2015	13:57	30,000.00	Feb-25-2015
152	Valve	Gas	30	sunny	1	2	2	N	at compressor	-	-	Feb-26-2015	15:09	50,000.00	Feb-26-2015
153	Valve	Gas	95	Cloudy	0	1	2	Y [1]	3" Gate	Jan-26-2015	0.461805556	Jan-26-2015	11:58	56,380.00	Jan-26-2015
154	Valve	Gas	90	cloudy				Y [3]	1" Gate	-	-	Jan-28-2015	12:58	60,800.00	Jan-28-2015
155	Valve	Gas	0	sunny	4	5	1	N	2" Control Valve on V11097	Feb-24-2015	0.399305556	Feb-24-2015	10:12	100,001.00	Feb-24-2015
156	Valve	Gas	10	Sunny	2	1	2	N	8" Valve @ Stem on Compressor			Feb-27-2015	11:41	100,001.00	Feb-27-2015
157	Valve	Gas	90	cloudy				Y [3]	3" Valve	Jan-28-2015		Jan-29-2015	13:08	104,501.00	Jan-29-2015
158	Valve	Gas	90	cloudy		1		Y [3]	Valve on K1400 Cylinder #3	Jan-28-2015	10:33	Jan-29-2015	13:36	104,501.00	Jan-29-2015
159	Valve	Gas	85	Cloudy	2	1	1	N N	6-inch			6-Aug-15	14:43	111,600.00	6-Aug-15
160	Valve	Gas	85	Cloudy	2	1	1	N	6-inch			6-Aug-15	14:28	269,700.00	6-Aug-15

104		
Sort order, sorted by Component Type, & Method 21 Concentration, print Concentration		HIGH FLOW SAMPLER DATA
Component Type Concentration, prime Component Type Concentration, prime Concentra		CALCULATED
Nethod 21 Component Type Concentration, ppw Component Type Concentration, ppw Con		CALCOLATED
Time Chegree C Flow CFM Bkg % SCH4 (%) SCFM Chegree C Flow CFM Bkg % SCFM Turveding) Turveding		
Time Degree C Flow FM Big % SCFH4 Sy Sy SCFH4 Sy Sy Sy Sy Sy Sy Sy S		Calculated CH4 Emissions
104	%CH4 % CFM	
105		Rate, kg/hr, STP, as methane
105		
106	0.045 0.00364	2.49E-03
107	0.0021 0.00017	1.78E-04
108	0.05 0.00400	4.21E-03
109	0.24 0.01944	1.92E-02
110	0.0013 0.00009	1.05E-04
111	0.0022 0.00015	1.91E-04
112 Other Gas 12:07 24.7 6.8 0 0 0.00000 24.7 5.6 0 0.15 0.00800 24.70 536.13 6.800 - 113 Other Gas 10:27 18.1 8.2 0 0.0212 0.00371 27.4 6.1 0.2994 Y 0.01826 27.40 540.99 6.750 - 114 Other Gas 10:27 18.1 8.2 0 0.2122 0.00371 27.4 6.1 0.2994 Y 0.01765 18.10 524.25 7.500 - 0 115 Other Gas 10:52 19.3 8.5 0 0.0135 0.0115 19.4 7.0 0 0.0205 Y 0.00144 19.35 526.50 7.750 - 0 116 Other Gas 14:24 3.1 8.3 0 50.008 0.0371 27.4 6.0 0.12 Y 0.00720	0.14 0.00800	9.30E-03
113 Other Gas 13:01 27.4 7.4 0.0501 0.0371 27.4 6.1 0.2994 Y 0.01826 27.40 540.99 6.750 - 0 114 Other Gas 10:52 18.1 8.2 0 0.2122 0.0115 19.4 7.0 0 0.0295 Y 0.0165 18.10 524.25 7.500 - 0 115 Other Gas 10:52 19.3 8.5 0 0.0115 19.4 7.0 0 0.0205 Y 0.00144 19.35 526.50 7.750 - 0 116 Other Gas 14:45 24.5 7.7 0 0.73 0.05600 24.5 6.4 0 0.72 0.05000 24.50 535.77 7.700 - 1 117 Other Gas 14:24 31.6 8.3 0 >50,000 4150,0000 27.0 54.0 20 22.1	0.27 0.01500	1.86E-02
114 Other Gas 10:27 18.1 8.2 0 0.2122 0.01740 18.1 6.8 0 0.2595 Y 0.01765 18.10 524.25 7.500 - 0 115 Other Gas 10:52 19.3 8.5 0 0.0135 0.00115 19.4 7.0 0 0.0205 Y 0.0144 19.35 526.50 7.750 - 0 116 Other Gas 14:45 24.5 7.7 0 0.73 0.05600 24.5 6.4 0 0.72 0.00144 19.35 526.50 7.750 - 0 117 Other Gas 12:57 27.3 7.3 0.0508 0.00371 27.4 6.0 0.12 Y 0.00720 27.35 540.90 6.650 - 118 Other Gas 14:23 27.1 6.7 0 0.0249 0.00000 3.4 Y 0.23120 31.6	0.15 0.00800	1.17E-02
115 Other Gas 10:52 19.3 8.5 0 0.0135 0.00115 19.4 7.0 0 0.0205 Y 0.00144 19.35 526.50 7.750 - 0 116 Other Gas 14:45 24.5 7.7 0 0.73 0.05000 24.5 6.4 0 0.72 0.05000 24.50 535.77 7.700 - 0 117 Other Gas 12:57 27.3 7.3 0.0508 0.00371 27.4 6.0 0.12 Y 0.00720 27.35 540.90 6.650 - 118 Other Gas 14:24 31.6 8.3 0 >50,000 4150.00000 31.6 6.8 0 3.4 Y 0.23120 31.60 548.55 7.550 - 119 Other Gas 14:35 27.1 6.7 0 0.0249 0.00000 27.05 5.6 0 0.0249 Y 0.00000	0.2994 0.01826	2.31E-02
116 Other Gas 14:45 24.5 7.7 0 0.73 0.05600 24.5 6.4 0 0.72 0.05000 24.50 535.77 7.700 - 117 Other Gas 12:57 27.3 7.3 0.0508 0.00371 27.4 6.0 0.12 Y 0.00720 27.35 540.90 6.650 - 118 Other Gas 14:24 31.6 8.3 0 >50,000 4150.00000 31.6 6.8 0 3.4 Y 0.23120 31.60 548.55 7.550 - 119 Other Gas 14:48 26.8 8.3 0.935 0.0761 26.8 6.8 1.08 Y 0.00000 27.05 540.36 6.150 - 120 Other Gas 11:0 21.3 5.5 0 0.0921 0.00000 21.30 4.1 0 0.0921 Y 0.00000 21.30 530.01 4.8	0.2595 0.01765	2.23E-02
117 Other Gas 12:57 27.3 7.3 0.0508 0.00371 27.4 6.0 0.12 Y 0.00720 27.35 540.90 6.650 - 118 Other Gas 14:24 31.6 8.3 0 >50,000 4150,00000 31.6 6.8 0 3.4 Y 0.23120 31.60 548.55 7.550 - 119 Other Gas 14:43 27.1 6.7 0 0.0249 0.00000 27.00 5.6 0 0.0249 Y 0.00000 27.05 540.36 6.150 - 120 Other Gas 14:48 26.8 8.3 0.935 0.07761 26.8 6.8 1.08 Y 0.07344 26.80 539.91 7.550 - 121 Other Gas 11:00 21.3 5.5 0 0.0921 0.00000 21.30 4.1 0 0.0921 Y 0.00000 21.30 5	0.0205 0.00144	1.82E-03
118 Other Gas 14:24 31.6 8.3 0 >50,000 4150,00000 31.6 6.8 0 3.4 Y 0.23120 31.60 548.55 7.550 - 119 Other Gas 14:35 27.1 6.7 0 0.0249 0.00000 27.00 5.6 0 0.0249 Y 0.00000 27.05 540.36 6.150 - 0 120 Other Gas 14:48 26.8 8.3 0.935 0.07761 26.8 6.8 1.08 Y 0.07344 26.80 539.91 7.550 - 121 Other Gas 11:00 21.3 5.5 0 0.0921 0.00000 21:30 4.1 0 0.0921 Y 0.0000 21:30 530.01 4.800 - 0 122 0.0000 21:30 5.0 0 0.073 Y 0.00000 21:30 530.01 4.800 - 0 0.021	0.73 0.05600	6.42E-02
119 Other Gas 14:35 27.1 6.7 0 0.0249 0.00000 27.00 5.6 0 0.0249 Y 0.00000 27.05 540.36 6.150 - 0 120 Other Gas 14:48 26.8 8.3 0.935 0.07761 26.8 6.8 1.08 Y 0.07344 26.80 539.91 7.550 - 121 Other Gas 11:00 21.3 5.5 0 0.0921 0.00000 21.30 4.1 0 0.0921 Y 0.00000 21.30 530.01 4.800 - 0 122 Other Gas 10:31 19.4 5.7 0 0.073 0.00000 29:30 6.0 0 0.0291 Y 0.00000 29:30 546.48 6.350 - 0 123 Other Gas 12:06 16:9 7.5 0 3.72 0.27900 16:9 6.2 0 <t< td=""><td>0.12 0.00720</td><td>9.12E-03</td></t<>	0.12 0.00720	9.12E-03
120 Other Gas 14:48 26.8 8.3 0.935 0.07761 26.8 6.8 1.08 Y 0.07344 26.80 539.91 7.550 - 121 Other Gas 11:00 21.3 5.5 0 0.0921 0.00000 21.30 4.1 0 0.0921 Y 0.00000 21.30 530.01 4.800 - 0 122 Other Gas 10:31 19.4 5.7 0 0.073 0.00000 19.50 5.0 0 0.073 Y 0.00000 19.45 526.68 5.350 - 0 123 Other Gas 13:50 29.3 7.3 0 0.0291 0.00000 29.30 6.0 0 0.0291 Y 0.00000 29.30 544.41 6.650 - 0 124 Other Gas 12:06 16:9 7.5 0 3.72 0.27900 16:9 6.2 0 <th< td=""><td>3.4 4150.00000</td><td>2.94E-01</td></th<>	3.4 4150.00000	2.94E-01
121 Other Gas 11:00 21:3 5.5 0 0.0921 0.00000 21:30 4.1 0 0.0921 Y 0.00000 21:30 530.01 4.800 - 0 122 Other Gas 10:31 19.4 5.7 0 0.073 0.00000 19.50 5.0 0 0.073 Y 0.00000 19.45 526.68 5.350 - 0 123 Other Gas 13:50 29.3 7.3 0 0.0291 0.00000 29.30 6.0 0 0.0291 Y 0.00000 29.30 544.41 6.650 - 0 124 Other Gas 12:06 16:9 7.5 0 3.72 0.27900 16:9 6.2 0 4.79 0.29700 16:90 522.09 6.850 - - 125 Other Gas 11:34 19:1 5.3 0 5.32 0.28200 19 4.2<	0.0249 0	1.72E-03
122 Other Gas 10:31 19.4 5.7 0 0.073 0.00000 19.50 5.0 0 0.073 Y 0.00000 19.45 526.68 5.350 - C 123 Other Gas 13:50 29.3 7.3 0 0.0291 0.00000 29.30 6.0 0 0.0291 Y 0.00000 29.30 544.41 6.650 - 0 124 Other Gas 12:06 16.9 7.5 0 3.72 0.27900 16.9 6.2 0 4.79 0.29700 16.90 522.09 6.850 - 0 125 Other Gas 11:34 19.1 5.3 0 5.32 0.28200 19 4.2 0 5.99 0.25200 19.05 525.96 4.750 - 12 126 Other Gas 13:51 37.3 6.5 0.15 4.6 0.28925 37.3 5.8 0.15	1.08 0.07761	9.32E-02
123 Other Gas 13:50 29:3 7.3 0 0.0291 0.00000 29:30 6.0 0 0.0291 Y 0.00000 29:30 544.41 6.650 - 0 124 Other Gas 12:06 16.9 7.5 0 3.72 0.27900 16.9 6.2 0 4.79 0.29700 16.90 522.09 6.850 - 0 125 Other Gas 11:34 19.1 5.3 0 5.32 0.28200 19 4.2 0 5.99 0.25200 19.05 525.96 4.750 - 126 Other Gas 12:01 17.3 6.2 0 8.29 0.51400 17.1 4.9 0 10.83 0.53100 17.20 525.86 4.750 - 12 127 Other Gas 11:08 21.3 6.5 0.15 4.6 0.28925 37.3 5.8 0.15 5.3 0	0.0921 0	4.95E-03
124 Other Gas 12:06 16:9 7.5 0 3.72 0.27900 16:9 6.2 0 4.79 0.29700 16:90 522.09 6.850 - 6.2 0 4.79 0.29700 16:90 522.09 6.850 - 6.2 0 125 0.29 0.25200 19 4.2 0 5.99 0.25200 19.05 525.96 4.750 - 6.2 0 8.29 0.51400 17.1 4.9 0 10.83 0.53100 17.20 525.96 4.750 - 12 127 Other Gas 13:51 37.3 6.5 0.15 4.6 0.28925 37.3 5.8 0.15 5.3 0.29870 558.81 558.61 6.150 0.15 4.6 0.28925 37.3 5.8 0.15 5.3 0.29870 558.81 6.150 0.15 4.7 0.29825 37.3 5.8 0.15 5.3 0.29870 558.01 5.9	0.073 0	4.39E-03
125 Other Gas 11:34 19.1 5.3 0 5.32 0.28200 19 4.2 0 5.99 0.25200 19.05 525.96 4.750 - 126 126 Other Gas 12:01 17.3 6.2 0 8.29 0.51400 17.1 4.9 0 10.83 0.53100 17.20 522.63 5.550 - 1 127 Other Gas 13:51 37.3 6.5 0.15 4.6 0.28925 37.3 5.8 0.15 5.3 0.29870 37.30 558.81 6.150 0.15 4.6 128 Valve Gas 11:08 21.3 6.5 0 0.00044 0.00000 21.40 5.4 0 0.00044 Y 0.00000 21.35 530.10 5.950 - 0.0 129 Valve Gas 11:18 22.6 6.6 0 0.00029 0.00000 22.70 5.5 0	0.0291 0	2.18E-03
125 Other Gas 11:34 19.1 5.3 0 5.32 0.28200 19 4.2 0 5.99 0.25200 19.05 525.96 4.750 - 12 126 Other Gas 12:01 17.3 6.2 0 8.29 0.51400 17.1 4.9 0 10.83 0.53100 17.20 522.63 5.550 - 1 127 Other Gas 13:51 37.3 6.5 0.15 4.6 0.28925 37.3 5.8 0.15 5.3 0.29870 37.30 558.81 6.150 0.15 4.6 128 Valve Gas 11:08 21.3 6.5 0 0.00044 0.00000 21.40 5.4 0 0.00044 Y 0.00000 21.35 530.10 5.950 - 0.0 129 Valve Gas 11:18 22.6 6.6 0 0.000029 0.00000 22.70 5.5 0	4.79 0.29700	3.73E-01
126 Other Gas 12:01 17.3 6.2 0 8.29 0.51400 17.1 4.9 0 10.83 0.53100 17.20 522.63 5.550 - 1 127 Other Gas 13:51 37.3 6.5 0.15 4.6 0.28925 37.3 5.8 0.15 5.3 0.29870 37.30 558.81 6.150 0.15 4.6 0.28925 37.3 5.8 0.15 5.3 0.29870 37.30 558.81 6.150 0.15 4.6 0.28925 37.3 5.8 0.15 5.3 0.29870 37.30 558.81 6.150 0.15 4.6 0.28925 37.3 5.4 0 0.00044 Y 0.00000 21.35 530.10 5.950 - 0.0 128 Valve Gas 11:18 22.6 6.6 0 0.000029 0.00000 22.70 5.5 0 0.000029 Y 0.00000 22.65 532.44 6.	5.99 0.28200	3.24E-01
127 Other Gas 13:51 37.3 6.5 0.15 4.6 0.28925 37.3 5.8 0.15 5.3 0.29870 37.30 558.81 6.150 0.15 4.6 128 Valve Gas 11:08 21.3 6.5 0 0.00044 0.00000 21.40 5.4 0 0.00044 Y 0.00000 21.35 530.10 5.950 - 0. 129 Valve Gas 11:18 22.6 6.6 0 0.00029 0.00000 22.70 5.5 0 0.00029 Y 0.00000 22.65 532.44 6.050 - 0.	10.83 0.53100	6.84E-01
128 Valve Gas 11:08 21.3 6.5 0 0.00044 0.00000 21.40 5.4 0 0.00044 Y 0.00000 21.35 530.10 5.950 - 0.00000 129 Valve Gas 11:18 22.6 6.6 0 0.00029 0.00000 22.70 5.5 0 0.00029 Y 0.00000 22.65 532.44 6.050 - 0.00000	4.95 0.29870	3.33E-01
129 Valve Gas 11:18 22.6 6.6 0 0.00029 0.00000 22.70 5.5 0 0.00029 Y 0.00000 22.65 532.44 6.050 - 0.000000	0.00044 0	3.00E-05
	0.00029 0	2.01E-05
130 Valve Gas 14:11 26.7 6.8 0 0.00017 0.00000 26.80 5.7 0 0.00017 Y 0.00000 26.75 539.82 6.250 - 0.00017 V 0.00000 26.75 539.82 6.250 - 0.00017 V 0.00000 26.75 2	0.00017 0	1.19E-05
	0.00025 0	1.71E-05
	0.000911 0	6.41E-05
	0.00047 0	3.56E-05
	0.00048 0	3.51E-05
	0.01045 0.00066	7.84E-04
	0.001601 0	1.14E-04
	0.001508 0	1.14E-04 1.10E-04
	0.001308 0	6.24E-05
	0.000/8 0	
		5.55E-05
	*******	5.30E-05
	******	2.74E-05
		1.06E-04
	0.0212 0	1.40E-03
	0.000207 0	1.58E-05
	0.0021 0	1.63E-04
	0.0406 0	1.55E-03
	0.001801 0.00011	1.25E-04
	38.98 0.06000	3.19E+00
	0.0107 0	7.51E-04
	2.23 0.15972	1.77E-01
	0.4358 0.02969	3.76E-02
	0.2817 0.02000	2.27E-02
	0.5 0.03100	3.73E-02
	0.0278 0	2.06E-03
	0.07 0.00473	5.61E-03
	19.4 1.21000	1.43E+00
	0.17 0.00600	7.16E-03
	0.12 0	9.77E-03
	0.082 0.00677	6.80E-03
160 Valve Gas 13:37 36.7 8.1 0 0.24 0.01944 36.8 6.9 0 0.29 0.02001 36.75 557.82 7.500 - 0.02001		2.24E-02

Note: results with all values = zero are hidden, see

Appendix E for Descriptive Statistics for all leak CANISTER DATA TEDLAR BAG DATA EPA METHOD TO-15 CONCENTRATION DATA CALCULATED CALCULATED CALCULATED ppmv @ STP Sort order, sorted by 78.112 58.079 Component Type, & Method 21 Component Type og10 TOC of Linked Log10 TVA as CH4, Log10 CH4 EmRate, 1,3,5-Trimethyl an I-Vac Can F-Vac TOC Emissions Sample # Time Can ID Sample(s) # 4-Ethyltoluene Concentration, ppm Date Date Time 2-Hexanone Acetone Benzene kg/hr, as methan (in Hg) (in Hg) benzene ppmv Estimates, kg/hr 104 Other 2.83 -2.60 105 Other Gas 2.90 -3.75 106 Other Gas 3.30 -2.38 107 Other 3.54 -1.72 108 Other 3.60 -3.98 Gas 109 Other Gas 3.60 -3.72 -2.08 CAN014 Jan-27-2015 0.528472222 OEC-39-0339 28.5 TB014 Jan-27-2015 12:43 ND ND ND ND 2.80E+01 110 Gas 3.89 -2.03 Other 111 Other 3.95 -1.73 112 Other 4.00 -1.93 113 Other Gas 4.03 -1.64 114 Other 4.08 -1.65 Gas 115 4.19 -2.74 Other Gas CAN009 Jan-22-2015 0.617361111 OEC-39-0296 14:50 1.30E+02 -1.13 28.75 TB009 Jan-22-2015 2.30E+03 2.40E+02 ND 5.60E+01 116 Other Gas 4.26 -1.19 117 Other Gas 4.44 -2.04 118 Other 4.70 -0.53 119 Other 4.81 -2.76 Gas TB029A/TB029B ND ND 2.10E+01 120 5.00 -1.03 -1.12 Feb-25-2015 14:51 ND ND Other Gas 121 5.00 Other Gas -2.31 CAN020 122 Other Gas 5.02 -2.36 -2.65 Jan-29-2015 10:36 OEC-29-708 28.25 TB020 Jan-29-2015 10:38 ND ND ND ND 2.00E+01 123 Other Gas 5.06 -2.66 -3.11 CAN016 Jan-27-2015 14:18 OEC-29-728 27 0 TB016 Jan-27-2015 14:20 ND ND ND ND 4.30E+01 124 -0.43 Other 5.11 Gas -0.77 TB025A/TB025B Feb-23-2015 0.481944444 ND ND ND 5.30E+01 125 Other 5.11 -0.49 ND Gas 126 Other Gas 5.11 -0.17 8.40E+00 127 -0.31 TB-40A/TB-40B Aug-06-2015 0.581944444 ND ND ND ND Other Gas 5.70 -0.48 128 Valve Gas 0.30 -4.52 129 Valve 0.51 -4.70 Gas 130 -4.92 Valve Gas 1.08 1.26 -4.77 131 Valve Gas 132 Gas 1.70 -4.19 Valve 133 Valve 1.81 -4.45 134 Valve Gas 1.86 -4.45 135 Valve Gas 2.48 -3.11 136 2.51 -3.94 Valve Gas 7.40E+01 -3.43 CAN011 Jan-23-2015 12:03 OEC-29-702 28.5 0 TB011 Jan-23-2015 12:04 ND ND ND ND 137 Gas 2.52 -3.96 Valve -4.20 138 Valve 2.79 139 Valve 2.88 -4.26 140 Valve 2.90 -4.28 Gas 141 2.97 -4.56 Jan-28-2015 OEC-117-34 Jan-28-2015 14:16 ND ND ND ND ND Valve Gas 142 Gas 3.08 -3.97 Valve 143 Valve 3.15 -2.85 Gas 144 Valve Gas 3.26 -4.80 145 Valve Gas 3.36 -3.79 146 Valve 3.49 -2.81 Gas 147 Valve Gas 3.52 -3.90 148 0.50 Valve Gas 4.12 149 Valve Gas 4.30 -3.12 150 Valve 4.37 -0.75 -5.15 TB044A/TB044B Aug-11-2015 11:50 ND ND ND ND ND 151 Valve 4.48 -1.42 -1.71 TB028A/TB028B Feb-25-2015 14:02 ND ND ND ND 9.80E+00 152 Valve Gas 4.70 -1.64 -1.76 TB032A/TB032B Feb-26-2015 15:15 ND ND ND ND 1.10E+01 153 Valve 4.75 -1.43 -1.59 CAN013 Jan-26-2015 0.504166667 OEC-117-11 TB013 Jan-26-2015 12:08 ND ND ND ND ND Gas 154 Gas 4.78 -2.69 Valve TB026A/TB026B Feb-24-2015 -2.19 ND ND ND ND 155 Valve 5.00 -2.25 10:15 ND 156 Valve 5.00 0.16 157 Valve 5.02 -2.15 Gas 158 Valve Gas 5.02 -2.01 159 Gas -2.17 Valve 5.05 TB-041A/TB-041B Aug-06-2015 160 -1.60 14:35 ND ND ND ND ND Valve 5.43 -1.65

Appendix E for Descrip	tive Statistics for all lea	(
9	Component Information																	METHOD TO-15 Calculate			METHOD TO-15 Calcul		
Sort order, sorted by			ppmv @ STP	ppmv @ STP			ppmv @ STP			ppmv @ STP					ppmv @ STP		ppmv @ STP	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr
Component Type, &			76.139		84.16	46.068	88.11	106.165	100.21		86.18	60.1	100.16	92.14	105	131.4	106.165	120.19	120.19	100.16	120.1916	58.079	78.112
Method 21	Component Type	Service								Hexachlorobuta		Isopropyl	Methyl Isobutyl		TPH Gasoline	Trichloroethene	Xylenes	1,2,4-Trimethyl-	1,3,5-Trimethyl-				
Concentration, ppmv			Carbon disulfide	Chlorobenzene	Cyclohexane	Ethanol	Ethyl Acetate	Ethylbenzene	Heptane	diene	Hexane	alcohol	Ketone	Toluene	(C4-C12)	(TCE)	(total)	benzene	benzene	2-Hexanone	4-Ethyltoluene	Acetone	Benzene
										4.66		4.000.			(0.022)	()	(1010.)	201120110	20.120.10				
104	Other	Gas																					
105	Other	Gas																					
106	Other	Gas																					
107 108	Other Other	Gas Gas																					
109	Other	Gas																					
110	Other	Gas	ND	ND	1.30E+02	ND	ND	ND	3.20E+01	ND	3.80E+02	ND	ND	1.00E+01	4.50E+03	ND	ND			-	-	-	8.8293E-07
111	Other	Gas																					
112	Other	Gas																					
113	Other	Gas																					
114 115	Other Other	Gas Gas																					
116	Other	Gas	ND	7.50E+02	5.00E+03	ND	ND	3.10E+02	1.40E+03	ND	1.70E+03	ND	ND	2.80E+02	2.50E+05	ND	1.00E+03		- 8.4382E-06	1.2441E-04	1.5578E-05	-	2.3623E-06
117	Other	Gas	- 112	1,000	0.002		7.2	0.202 02											37.100== 00				
118	Other	Gas																					
119	Other	Gas																					
120	Other	Gas	ND	ND	5.50E+01	6.10E+01	ND	ND	2.90E+01	ND	3.90E+01	ND	ND	1.50E+01	ND	ND	ND			-	-	-	8.6253E-07
121 122	Other Other	Gas Gas	ND	ND	9.40E+01	ND	ND	ND	2.10E+01	ND	2.50E+02	ND	ND	ND	ND	ND	ND			_	_	_	5.8602E-07
123	Other	Gas	ND	ND	1.00E+02	ND	ND ND	ND	3.30E+01	ND ND	3.50E+02	ND ND	ND ND	1.20E+01	1.60E+04	ND	ND ND		-	_	-		1.5192E-06
124	Other	Gas	115	1,12	11002.02	.115	110	5	5,502.402	113	5,552 + 52	.,,,,	1,15	11202:01	21002101	.,,,	.,,5						1.01522 00
125	Other	Gas	ND	ND	8.70E+01	9.50E+01	ND	ND	3.50E+01	ND	7.30E+01	ND	ND	2.90E+01	ND	ND	ND			-	=	-	1.3984E-06
126	Other	Gas																					
127	Other	Gas	ND	ND	5.00E+01	ND	ND	ND	7.50E+01	ND	1.90E+02	ND	ND	9.00E+00	7.30E+03	ND	ND			-	-	-	2.6793E-07
128 129	Valve Valve	Gas Gas																					
130	Valve	Gas																					
131	Valve	Gas																					
132	Valve	Gas																					
133	Valve	Gas																					
134	Valve	Gas																					
135 136	Valve Valve	Gas Gas																					
137	Valve	Gas	ND	ND	3.60E+02	ND	ND	ND	1.90E+02	ND	4.50E+02	ND	ND	9.80E+01	6.90E+03	ND	ND		-	-	-	-	2.5821E-06
138	Valve	Gas	- 112		0.000		7.2							0.002 02	0.000								
139	Valve	Gas																					
140	Valve	Gas																					
141	Valve	Gas	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-	-	-	-
142 143	Valve Valve	Gas Gas																					
144	Valve	Gas																					
145	Valve	Gas																					
146	Valve	Gas																					
147	Valve	Gas																					
148	Valve	Gas																					
149 150	Valve Valve	Gas Gas	8.70E+00	ND	1.10E+01	ND	ND	ND	2.10E+01	ND	3.20E+01	4.40E+01	ND	2.00E+01	ND	ND	3.80E+01			_			
151	Valve	Gas	ND	ND ND	1.70E+01	ND ND	ND ND	ND	ND	ND ND	1.60E+01	4.40E+01 ND	ND ND	ND	ND ND	ND	ND			-	-	-	4.0610E-07
152	Valve	Gas	ND	ND	ND	ND	ND	ND	ND	ND	1.70E+01	ND	ND	1.10E+01	ND	ND	ND			-	-		4.1966E-07
153	Valve	Gas	ND	ND	2.70E+01	ND	ND	ND	1.40E+01	ND	5.20E+01	ND	ND	ND	ND	ND	ND		-	-	-	-	-
154	Valve	Gas																					
155	Valve	Gas	ND	ND	ND	1.10E+02	ND	ND	ND	ND	ND	ND	ND	9.20E+00	ND	ND	ND		-	-	-	-	-
156 157	Valve Valve	Gas Gas																					
158	Valve	Gas																					
159	Valve	Gas																					
160	Valve	Gas	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.40E+01	ND			-	-	-	-
			•	•	•	•	•		•		•				•	•	•		•				

Note: results with all values = zero are hidden, see Appendix E for Descriptive Statistics for all leak

ASTM 1945/3588 Concentration Data Component Information kg/hr Sort order, sorted by 100.16 76.139 112.56 84.16 46.068 88.11 106.165 100.21 86.18 60.1 92.14 105 131.4 106.165 Component Type, 8 Method 21 Component Type Service /lethyl Isobuty PH Gasoline Oxygen Oxygen Nitrogen Isopropyl Nitrogen Concentration, ppm Carbon disulfide Chlorobenzene Cyclohexane Ethanol **Ethyl Acetate** Ethylbenzene Heptane Hexane Toluene Xylenes (total) alcohol Ketone (C4-C12) (TCE) (Mol%) (Mol%) (ppb) (Mol%) Other 104 Gas 105 Other 106 Other Gas 107 Other Gas 108 Other 109 Other Gas 4.4167E-06 1.2945E-06 1.3220E-05 3.7196E-07 1.9075E-04 2.1159E+01 2.1159E+08 7.8669E+01 7.8669E+08 110 Other Gas 111 Other 112 Other Gas 113 Other Gas 114 Other Gas 115 Other Gas 1.4176E-02 5.7335E-05 2.1337E+01 2.1337E+08 7.7918E+01 7.7918E+08 116 Other Gas 4.5591E-05 2.2725E-04 1.7774E-05 7.5766E-05 7.9121E-05 1.3933E-05 117 Other Gas 118 Other Gas 119 Other Gas 120 Other 2.4339E-06 1.4776E-06 1.5281E-06 1.7673E-06 7.2674E-07 2.1354E+01 2.1354E+08 7.7722E+01 7.7722E+08 Gas 121 Other Gas 122 Other Gas 2.9676E-06 7.8940E-07 8.0819E-06 2.1123E+01 2.1123E+08 7.8803E+01 7.8803E+08 7.5987E-04 123 Other Gas 3.8066E-06 1.4957E-06 1.3643E-05 5.0010E-07 2.1196E+01 2.1196E+08 7.8751E+01 7.8751E+08 124 Other Gas 125 Other 2.4732E-06 1.4783E-06 1.1847E-06 2.1251E-06 9.0258E-07 2.0849E+01 2.0849E+08 7.5966E+01 7.5966E+08 126 Other Gas 1.7183F-06 3.0690F-06 6.6862F-06 3.3862E-07 3.1299E-04 1.9457E+01 1.9457E+08 7.2992E+01 7.2992E+08 127 Other Gas 128 Valve Gas 129 Valve Gas 130 Valve 131 Valve Gas Valve 132 Gas 133 Valve 134 Valve Gas 135 Valve Gas 136 Valve Gas 1.3534E-05 8.5053E-06 1.7324E-05 4.0336E-06 3.2364E-04 2.1565E+01 2.1565E+08 7.8405E+01 7.8405E+08 137 Valve Gas 138 Valve Gas 139 Valve Gas 140 Valve Gas 2.1249E+01 2.1249E+08 7.8726E+01 7.8726E+08 141 Valve Gas 142 Valve Gas 143 Valve Gas 144 Valve 145 Valve Gas 146 Valve Gas 147 Valve Gas 148 Valve Gas 149 Valve 150 Valve Gas 3.1601E-07 4.4164E-07 8.7912E-07 1.9246E-06 2.1413E+01 2.1413E+08 7.8556E+01 7.8556E+08 151 Valve 7.5901E-07 7.3151E-07 2.1458F+01 2.1458F+08 7.8291E+01 7.8291E+08 Gas 4.9503E-07 152 Valve 7.1556E-07 2.1536E+01 2.1536E+08 7.8207E+01 7.8207E+08 153 Valve 1.0255E-06 6.3317E-07 2.0225E-06 2.1339E+01 2.1339E+08 7.8363E+01 7.8363E+08 Gas 154 Valve Gas 155 Valve 2.5612E-06 4.2844E-07 2.1522E+01 2.1522E+08 7.8359E+01 7.8359E+08 Gas 156 Valve Gas 157 Valve Gas 158 Valve Gas 159 Valve Gas 160 Valve Gas 9.1770E-07 2.1021E+01 2.1021E+08 7.8635E+01 7.8635E+08

	tive Statistics for all leak																								
	Component Information																		ASTM 1945/3588 Concentration Data			ASTM 1945/3588 Emissions (kg/hr)			
Sort order, sorted by																						24.0000	20.0424 2.04	20.0406	44.01
Component Type, &																						31.9988	28.0134 2.01	28.0106	44.01
Method 21	Component Type	Service	Hydrogen	Carbon	Carbon	Carbon	Carbon	Methane	Methane	Ethane	Ethane	Propane	Propane	i-Butane	i-Butane	n-Butane	n-Butane	i-Pentane	i-Pentane	n-Pentane	n-Pentane			Carbon	Carbon
Concentration, ppmv			(ppb)	Dioxide	Dioxide	Monoxide	Monoxide	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	Oxygen	Nitrogen Hydrogen	Monoxide	Dioxide
			,	(Mol%)	(ppb)	(Mol%)	(ppb)	, ,	,	, ,	,	, ,	,	, ,	,	, ,	,	, ,	,	, ,	,				
104	Other	Gas																							
105	Other	Gas																							
106 107	Other	Gas																							
107	Other Other	Gas																							
109	Other	Gas																							
110	Other	Gas	-	4.6944E-02	4.6944E+05	-	-	1.2485E-01	1.2485E+06	-	-	-	-	-	-	-	-	-		-		- 2.7332E+00	8.8966E+00 -	-	8.3404E-03
111	Other	Gas																							
112	Other	Gas																							
113	Other	Gas																							
114 115	Other Other	Gas																							
116	Other	Gas		5.3201E-02	5 3201F+05		-	6 9183F-01	6.9183E+06	-		-	-	-		-		-		-		- 3.6872E+00	1.1788E+01 -		1.2645E-02
117	Other	Gas		5.52012 02	5.52012:05			0.51052 01	0.52052+00													5,00722.00	1117002101		1120 102 02
118	Other	Gas																							
119	Other	Gas																							
120	Other	Gas	-	2.6735E-02	2.6735E+05	-	-	8.9746E-01	8.9746E+06	-	-	-	-	-	-	-	-	-	-	-		- 3.5930E+00	1.1448E+01 -	-	6.1870E-03
121 122	Other Other	Gas		2 77205 02	3.7738E+05			2 68505 02	3.6850E+05													- 2.5354E+00	8.2808E+00 -		6.2302E-03
123	Other	Gas	- 1		5.2817E+05	-	-	3.085UE-U2	3.085UE+U5	-			-	1	-	-		-		-	.	- 2.5354E+00 - 3.0677E+00	9.9782E+00 -	1	1.0514E-02
124	Other	Gas		J.2017L-02	3.28171103										-							3.00772400	3.3782E100		1.03141-02
125	Other	Gas	-	4.0529E-02	4.0529E+05	-	-	3.1437E+00	3.1437E+07	-	-	-	-	-	-	-	-	-		-		- 2.2536E+00	7.1883E+00 -	-	6.0250E-03
126	Other	Gas																							
127	Other	Gas	-	3.1145E-02	3.1145E+05	-	-	7.4954E+00	7.4954E+07	2.4252E-02	2.4252E+05	-	-	-	-	-	-	-		-		- 2.5423E+00	8.3495E+00 -	-	5.5970E-03
128	Valve	Gas																							
129 130	Valve Valve	Gas																							
131	Valve	Gas																							
132	Valve	Gas																							
133	Valve	Gas																							
134	Valve	Gas																							
135	Valve	Gas																							
136 137	Valve Valve	Gas		2.9548E-02	2 05495+05																	- 3.0826E+00	9.8115E+00 -		5.8091E-03
138	Valve	Gas		2.9548E-UZ	2.9548E+05	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-		3.0826E+00	9.8115E+00 -	_	5.8091E-03
139	Valve	Gas																							
140	Valve	Gas																							
141	Valve	Gas	-	2.4328E-02	2.4328E+05	-	-	-	-	-	-	-	-	-	-	-	-	-		-		- 2.8695E+00	9.3069E+00 -	-	4.5183E-03
142	Valve	Gas																							
143 144	Valve	Gas																							
144	Valve Valve	Gas																							
146	Valve	Gas																							
147	Valve	Gas																							
148	Valve	Gas																							
149	Valve	Gas																							
150	Valve	Gas	-		3.1394E+05	-	-			-	-	-	-	-	-	-	-	-	-	-	<u> </u>	3.2687E+00	1.0498E+01 -	-	6.5911E-03
151 152	Valve Valve	Gas	-	2.0747E-02 3.4662E-02	2.0747E+05 3.4662E+05	+	-		2.2977E+06 2.2236E+06	-	-	-	-	 	-	-		-		-		- 3.6427E+00 - 3.3658E+00	1.1635E+01 - 1.0700E+01 -	+	4.8438E-03 7.4507E-03
152	Valve	Gas	1		2.1833E+05	 	 		2.2236E+06 2.3700E+06	-	-	2.5404E-02	2.5404E+05	 	-	1.3713E-02	1.3713E+05	-		1	 	3.3658E+00 - 3.0816E+00	9.9074E+00 -	+	4.3365E-03
154	Valve	Gas		20001 02	2.10001.00			2.57 502 01	2.3,302.00			2.5 .542 02	2.5.542.05			1.0. 10. 02	1.5, 152.05					5.55152.00	3.507 .2.50		
155	Valve	Gas		3.9323E-02	3.9323E+05	-	-	7.8798E-02	7.8798E+05	-	-	-	-	-	-	-	-	-		-		- 3.4808E+00	1.1095E+01 -	-	8.7469E-03
156	Valve	Gas																							
157	Valve	Gas																							
158	Valve	Gas																							
159 160	Valve Valve	Gas		2 21445 02	3.2144E+05			2 12125 01	3.1213E+06													- 3.3556E+00	1.0989E+01 -		7.0572E-03
100	valve	UdS	-	3.2144E-UZ	3.2144E+U5	_	-	3.1213t-Ul	3.1213E+U6	-	-		-	-	-	-		_	-1 -		<u> </u>	5.555bE+UU	1.0989E+01 -	-	7.U372E-U3

Note: results with all values = zero are hidden, see

Appendix E for Descriptive Statistics for all leak

Appendix E for Descrip	tive Statistics for all leak									
	Component Information		kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr
Sort order, sorted by			16.043	30.07	44.097	58.123	58.123	72.15	72.15	CALCULATED
Component Type, &			10.043	30.07	44.037	30.123	38.123	72.13	72.13	
Method 21	Component Type	Service								TOC, kg/hr
Concentration, ppmv			Methane	Ethane	Propane	i-Butane	n-Butane	i-Pentane	n-Pentane	(does not incl.
										TPH)
104	Other	Gas								
105	Other	Gas								
106	Other	Gas								
107	Other	Gas								
108	Other	Gas								
109	Other	Gas								
110	Other	Gas	8.0859E-03	-	-	-	-	-	-	8.2968E-03
111	Other	Gas								
112	Other	Gas								
113	Other	Gas								
114 115	Other Other	Gas Gas								-
116	Other	Gas	5.9941E-02	-		_	-		-	7.4785E-02
117	Other	Gas	3.9941L=02	-	-	-	-	-	-	7.4783L-02
118	Other	Gas								
119	Other	Gas								
120	Other	Gas	7.5708E-02	-	-	-	-	-	-	7.5717E-02
121	Other	Gas								
122	Other	Gas	2.2176E-03	-	-	-	-	-	-	2.2300E-03
123	Other	Gas	-	-	-	-	-	-	-	7.8083E-04
124	Other	Gas								
125	Other	Gas	1.7036E-01	-	-	1	-	-	-	1.7037E-01
126	Other	Gas								
127	Other	Gas	4.9102E-01	2.9779E-03	-	-	-	-	-	4.9433E-01
128	Valve	Gas								ı
129	Valve	Gas								
130	Valve	Gas								
131	Valve	Gas								
132 133	Valve Valve	Gas Gas								
134	Valve	Gas								1
135	Valve	Gas								
136	Valve	Gas								
137	Valve	Gas	-	-	-	-	-	-	-	3.6962E-04
138	Valve	Gas								
139	Valve	Gas								
140	Valve	Gas								
141	Valve	Gas	-	-	-	-	-	-	-	-
142	Valve	Gas								
143	Valve	Gas								
144	Valve	Gas								
145	Valve	Gas								
146	Valve	Gas								
147	Valve	Gas								
148	Valve	Gas								
149	Valve	Gas								7.1424E-06
150 151	Valve Valve	Gas Gas	1.9555E-02	-	-	-	-	-	-	1.9557E-02
152	Valve	Gas	1.7424E-02	-	-	-	-	1	-	1.7425E-02
153	Valve	Gas	1.7424E-02 1.7160E-02	-	5.0557E-03	-	3.5971E-03	-	-	2.5817E-02
154	Valve	Gas	1.71000 02		3.03371 03		3.33712 03			2.30172 02
155	Valve	Gas	6.3893E-03	-	-	-	-	-	-	6.3923E-03
156	Valve	Gas								
157	Valve	Gas								
158	Valve	Gas								
159	Valve	Gas								
160	Valve	Gas	2.4980E-02	-	-	-	-	-	-	2.4981E-02

Note: results with all values = zero are hidden, see Appendix E for Descriptive Statistics for all leak

	tive Statistics for all leak	letter et a contract at					I AFTE ODOLOGY				*********
	Component Information	Site Characterization					METEOROLOGY:				METEOROLOGY
Sort order, sorted by											
Component Type, &											
Method 21	Component Type	Service					WIND	WIND	AMBIENT		BAROMETRIC
Concentration, ppmv		EQUIPMENT/ACTIVITY DESCRIPTION	DATE REGULATORY IDs	#WELLS	FACILITY TYPE: (OIL/GAS)	THROUGHPUT(s)	DIRECTION	SPEED	TEMPERATURE	% RH	PRESSURE
							FROM	(mph)	(F)		(inHg)
161	Connector	Liquid Natural Gas Processing	2.1445	0	Network Continuida	Maritials Issues (Outsuits	SE	7.1	57.7	70	29.69
161 162		11.1	3-Mar-15 20-Jan-15 LAFD #2990	5	Natural Gas Liquids	Multiple Inputs/Outputs	ESE	4.5	57.7	70	29.69
163		Liquid Oil Water Gas Separation Liquid Natural Gas Processing		0	Natural Gas Liquids	44 bb/day oil, 51 bb/day water Multiple Inputs/Outputs	SE	7.1	57.2	70.5 70	29.9
164		Liquid Gas Plant	3-Mar-15 2-Mar-15	0	Natural Gas Liquids Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW NW	0.8	64.5	48.6	29.69
165			2-Mar-15 3-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil Natural Gas Liquids		SF	7.1	57.7	48.6 70	29.69
166		Liquid Natural Gas Processing Liquid Gas Plant	2-Mar-15	0	Natural Gas Liquids Natural Gas Liquids (butane/Propane)/Light Oil	Multiple Inputs/Outputs 214 mmscf/day	NW SE	0.8	64.5	48.6	29.69
167		Liquid Gas Plant	2-Mar-15 2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5	48.6	28.4
168		Liquid Gas Plant		0		214 mmscf/day	NW	0.8	64.5	48.6	28.4
		·	2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil						
169		Liquid Gas Plant	2-Mar-15		Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5	48.6	28.4
170 171		Liquid Water separation	30-Jan-15 TITLE V 041	0	Gas	CF hhla/day Oil + 2000 hhla/day Matar	W	3.5	71	44.6	29.41 29.95
		Liquid Compressors, Pumps, Valves, Connectors, Glycol, Tank	21-Jan-15 CAL000381898	27	Oil & Gas	65 bbls/day Oil + 2000 bbls/day Water	SSW	1.3	66.6	73	
172 173		Liquid Natural Gas Processing Liquid Oil Production Facility	3-Mar-15	0 12	Natural Gas Liquids Oil	Multiple Inputs/Outputs	SE SSE	7.1	57.7 65.5	70 36.9	29.69 30.17
			23-Jan-15 149797			87 bbls/day Oil, 400-500 bbls/day Water					
174 175		Liquid Oil	22-Jan-15 39632	10	Oil	150 bbls/day Oil, 1000 bbls/day Water	ESE	1.7	76.3	41.8	30.14
175	OEL	Liquid Compressors, Pumps, Valves, Connectors, Glycol, Tank	21-Jan-15 CAL000381898	27	Oil & Gas	65 bbls/day Oil + 2000 bbls/day Water	SSW	1.3	66.6	73	29.95
	OEL	Liquid Oil	21-Jan-15 California T2175	4	Oil	11-12 bbls/day Oil, 500 bbls/day Water	SW	2.7	68.8	59.1	29.86
177	OEL	Liquid Compressors, Pumps, Valves, Connectors, Glycol, Tank	21-Jan-15 CAL000381898	27	Oil & Gas	65 bbls/day Oil + 2000 bbls/day Water	SSW	1.3	66.6	73	29.95
178	OEL	Liquid Water separation	27-Jan-15 TITLE V 041	0	Gas		WSW	1.3	77.8	47.9	29.68
179		Liquid Gas Plant	2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5	48.6	28.4
180		Liquid Natural Gas Processing	3-Mar-15	0	Natural Gas Liquids	Multiple Inputs/Outputs	SE	7.1	57.7	70	29.69
181		Liquid Oil	22-Jan-15 39632	10	Oil	150 bbls/day Oil, 1000 bbls/day Water	ESE	1.7	76.3	41.8	30.14
182		Liquid Oil	22-Jan-15 39632	10	Oil	150 bbls/day Oil, 1000 bbls/day Water	ESE	1.7	76.3	41.8	30.14
183	Other	Liquid Water separation	29-Jan-15 TITLE V 041	0	Gas	00.4.4.05/5.44	WSW	4	81.3	34.5	29.5
184		Liquid Natural Gas Well with lift compressor and glycol dehydrator	23-Feb-15 SEC.9 T-19N R-2W	1	Gas	88.1 MCF/DAY	NNW	15.9	52.5	23.1	29.98
185		Liquid Water separation	30-Jan-15 TITLE V 041	0	Gas		W	3.5	71	44.6	29.41
186		Liquid Water separation	28-Jan-15 TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
187	Pump	Liquid Water separation	28-Jan-15 TITLE V 041	0	Gas	244	WSW	1.5	-	-	29.6
188		Liquid Gas Plant	2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5	48.6	28.4
189	Valve	Liquid Gas Plant	2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5	48.6	28.4
190	Valve	Liquid Water separation	28-Jan-15 TITLE V 041	0	Gas	244	WSW	1.5		- 40.6	29.6
191	Valve	Liquid Gas Plant	2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5	48.6	28.4
192		Liquid Water separation	30-Jan-15 TITLE V 041	0	Gas		W	3.5	71	44.6	29.41
193	Valve	Liquid Water separation	30-Jan-15 TITLE V 041	0	Gas	244	W	3.5	71	44.6	29.41
194 195	Valve Valve	Liquid Gas Plant	2-Mar-15	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	214 mmscf/day	NW	0.8	64.5	48.6	28.4
		Liquid Water separation	27-Jan-15 TITLE V 041	0	Gas	214	WSW	1.3	77.8	47.9 48.6	29.68
196	Valve	Liquid Gas Plant	2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5		28.4
197	Valve	Liquid Water separation	28-Jan-15 TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
198	Valve	Liquid Water separation	28-Jan-15 TITLE V 041	0	Gas	244	WSW	1.5	-	- 40.6	29.6
199	Valve	Liquid Gas Plant	2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5	48.6	28.4
200		Liquid Gas Plant	2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5	48.6	28.4
201	Valve	Liquid Oil	22-Jan-15 39632	10	Oil	150 bbls/day Oil, 1000 bbls/day Water	ESE	1.7	76.3	41.8	30.14
202	Valve	Liquid Water separation	28-Jan-15 TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
203	Valve	Liquid Water separation	30-Jan-15 TITLE V 041	0	Gas		W	3.5	71	44.6	29.41
204		Liquid Water separation	28-Jan-15 TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
205	Valve	Liquid Water separation	30-Jan-15 TITLE V 041	0	Gas	244 (//	W	3.5	71	44.6	29.41
206		Liquid Gas Plant	2-Mar-15	0	Natural Gas Liquids (butane/Propane)/Light Oil	214 mmscf/day	NW	0.8	64.5	48.6	28.4
207	Valve	Liquid Water separation	28-Jan-15 TITLE V 041	0	Gas		WSW	1.5	-	-	29.6
208		Liquid Water separation	30-Jan-15 TITLE V 041	0	Gas		W	3.5	71	44.6	29.41
209	Valve	Liquid Water separation	29-Jan-15 TITLE V 041	0	Gas		WSW	4	81.3	34.5	29.5
210	Valve	Liquid Water separation	29-Jan-15 TITLE V 041	0	Gas		WSW	4	81.3	34.5	29.5
211	Valve	Liquid Water separation	28-Jan-15 TITLE V 041	0	Gas		WSW	1.5	-	-	29.6

Note: results with all values = zero are hidden, see

Y [2] = Y, Avanti Y [3] = Y, Operator run with Eagle Y [4] = Y, Operator run with Eagle quarterly Y [5] = Y, Quarterly, Summit

ues – zero ure maden, see	1 [4] - 1, Operati
ve Statistics for all leak	Y [5] = Y, Quarterl

	aiues = zero are nidden, se itive Statistics for all leak							Y [4] = Y, Operator run with Eagle quarterly Y [5] = Y, Quarterly, Summit						
Appendix L for Descrip	Component Information				Site Characterization			r [5] = 1, Quarterry, Summit	Component Information	IR CAMERA		EPA Method 21 Results		HIGH FLOW SAMPLER DATA
	component information				Site Characterization					III CAMEIO		El A Method 21 Results		III CITTE OUT SAIM EER BATA
Sort order, sorted by														
Component Type, &													Method 21	
Method 21	Component Type	Service		WEATHER (sunny,									Leak	
Concentration, ppmv			% CLOUD COVER	// . / /	# SEPARATORS	# TANKS	# COMPRESSORS	DOES SITE HAVE LDAR PLAN? (Y/N)	Description	Date	Time	Date	Time Concentration	Date
				light rain, heavy rain)										<mark>''</mark>
161	Connector	Liquid	5	Sunny	0	1		Y Quarterly Summit	Threaded, Propane, LDAR Tag 006519	3-Mar-1`5		3-Mar-15	14:49 200.00	3-Mar-15
162	Connector	Liquid	100	cloudy	0	3	2	V	UNION "L" on Valve#066868	5 17101 1 5	_	Jan-20-2015	9:46 530.00	Jan-20-2015
163	Connector	Liquid	5	Sunny	0	1	-	Y Quarterly Summit	1.5" Plug Propane LDAR Tag #006312	3-Mar-1`5	12:01	3-Mar-15	14:30 15000.00	3-Mar-15
164	Connector	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	Plug Butane	3 14101 1 3	12.01	Mar-2-2015	14:37 39000.00	Mar-2-2015
165	Connector	Liquid	5	Sunny	0	1	Several (electric)	Y Quarterly Summit	1/4" Swagelok Connector Natural Gasoline	3-Mar-1`5		3-Mar-15	15:21 50001.00	3-Mar-15
166	Connector	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	Plug Propane	5 111.0. 2 5		Mar-2-2015	14:49 148000.00	Mar-2-2015
167	Connector	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	3/8" Butane			Mar-2-2015	15:00 150000.00	Mar-2-2015
168	Connector	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	3/8" Butane Mix			Mar-2-2026	15:04 150000.00	Mar-2-2015
169	Connector	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	1" Plug on Natural Gasoline Line - Dripping	2-Mar-15	12:25	Mar-2-2015	13:52 207000.00	Mar-2-2015
170	Flange	Liquid	98	cloudy	•		Several (electric)	Y, Operator run with Eagle	on Reflux line to V-504		-	Jan-30-2015	10:11 120.00	Jan-30-2015
171	OEL	Liquid	23	Sunny	3	11	2	Y, Avanti	Christmas Tree at Oil Well No.10	_	_	Jan-21-2015	12:08 0.01	Jan-21-2015
172	OEL	Liquid	5	Sunny	0	1	-	Y Quarterly Summit	1/2" Propane	3-Mar-1`5		3-Mar-15	14:42 0.70	3-Mar-15
173	OEL	Liquid	0	Sunny	1	3	2	Y, Avanti	at West Side compressor	J 1VIGI 1 J	-	Jan-23-2015	12:13 45.00	Jan-23-2015
174	OEL	Liquid	50	Sunny	15	5	4	Y, Avanti	OEL at Well #9	_	-	Jan-22-2015	10:39 300.00	Jan-22-2015
175	OEL	Liquid	23	Sunny	3	11	2	Y. Avanti	Christmas Tree at Oil Well No.14	_	_	Jan-21-2015	12:18 603.00	Jan-21-2015
176	OEL	Liquid	0	Sunny	0	3	0	V	Christmas Tree at well	_	_	Jan-21-2015	15:09 1600.00	Jan-21-2015
177	OEL	Liquid	23	Sunny	3	11	2	Y, Avanti	Christmas Tree at Oil Well No.8	_	-	Jan-21-2015	11:45 1900.00	Jan-21-2015
178	OEL	Liquid	10 / 90 / 50/ 98	sunny	<u> </u>		-	Y, Operator run with Eagle	Glycol Drain Pot	Jan-27-2015	10:17	Jan-27-2015	13:26 2800.00	Jan-27-2015
179	OEL	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	Natural Gas	Juli 27 2013	10.17	Mar-2-2015	14:19 24000.00	Mar-2-2015
180	OEL	Liquid	5	Sunny	0	1	ocverar (creative)	Y Quarterly Summit	National Gasoline Sample Line	3-Mar-1`5		3-Mar-15	15:30 150000.00	3-Mar-15
181	Other	Liquid	50	Sunny	15	5	4	Y, Avanti	Stuffing Box at Well #12	5 Widi 15	-	Jan-22-2015	11:06 75.00	Jan-22-2015
182	Other	Liquid	50	Sunny	15	5	4	Y. Avanti	Stuffing Box at Well #11	_	-	Jan-22-2015	10:59 1136.00	Jan-22-2015
183	Other	Liquid	50	light cloudy		_	-	Y, Operator run with Eagle	Vent	Jan-29-2015	14:35	Jan-30-2015	10:41 128000.00	Jan-30-2015
184	Other	Liquid	10	sunny	1	1	2	N	Engine Oil Filter	Feb-23-2015	10:25	Feb-23-2015	11:24 130001.00	Feb-23-2015
185	Pump	Liquid	98	cloudy				Y, Operator run with Eagle	P-915 lean oil rate pump	-	-	Jan-30-2015	10:06 115.00	Jan-30-2015
186	Pump	Liquid	90	cloudy				Y. Operator run with Eagle	East De-ethanizer Feed Pump	-	-	Jan-28-2015	15:11 5000.00	Jan-28-2015
187	Pump	Liquid	90	cloudy				Y, Operator run with Eagle	West De-ethanizer Feed Pump	-	-	Jan-28-2015	15:02 50200.00	Jan-28-2015
188	Valve	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	1" Natural Gasoline			Mar-2-2015	14:33 10.00	Mar-2-2015
189	Valve	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	1/2 Gate Natural Gasoline			Mar-2-2015	14:24 56.00	Mar-2-2015
190	Valve	Liquid	90	cloudy				Y. Operator run with Eagle	1" Valve at the Bottom of Sight Glass Lean Oil	-	-	Jan-28-2015	14:35 57.00	Jan-28-2015
191	Valve	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	4" Propane			Mar-2-2015	14:56 60.00	Mar-2-2015
192	Valve	Liquid	98	cloudy				Y, Operator run with Eagle	Ball on Sight Glass lean oil vessel V-522	-	-	Jan-30-2015	9:48 86.00	Jan-30-2015
193	Valve	Liquid	98	cloudy				Y, Operator run with Eagle	3" Ball on Reflux Line to V-504	-	-	Jan-30-2015	10:18 99.00	Jan-30-2015
194	Valve	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	1" Depropanizer Liquid			Mar-2-2027	15:10 110.00	Mar-2-2015
195	Valve	Liquid	10 / 90 / 50/ 98	sunny				Y, Operator run with Eagle	10'' valve	-	-	Jan-27-2015	13:10 128.00	Jan-27-2015
196	Valve	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	6" Natural Gasoline			Mar-2-2015	14:49 139.00	Mar-2-2015
197	Valve	Liquid	90	cloudy				Y, Operator run with Eagle	1/2" Gate	-	-	Jan-28-2015	12:51 200.00	Jan-28-2015
198	Valve	Liquid	90	cloudy				Y, Operator run with Eagle	3" Ball Valve	-	-	Jan-28-2015	12:35 230.00	Jan-28-2015
199	Valve	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	4" Propane			Mar-2-2015	14:45 300.00	Mar-2-2015
200	Valve	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	6" Depropanizer Liquid			Mar-2-2027	15:13 350.00	Mar-2-2015
201	Valve	Liquid	50	Sunny	15	5	4	Y, Avanti	base of the valve at compressor in Glycol Skid	-	ı	Jan-22-2015	11:20 356.00	Jan-22-2015
202	Valve	Liquid	90	cloudy				Y, Operator run with Eagle	6" Gate	-	-	Jan-28-2015	13:20 687.00	Jan-28-2015
203	Valve	Liquid	98	cloudy				Y, Operator run with Eagle	Gate 3/4" on Pressure side of still reflux pump P-906	-	-	Jan-30-2015	10:34 3300.00	Jan-30-2015
204	Valve	Liquid	90	cloudy				Y, Operator run with Eagle	2" Gate	-	-	Jan-28-2015	14:45 10200.00	Jan-28-2015
205	Valve	Liquid	98	cloudy				Y, Operator run with Eagle	Gate on lean oil vessel V-522	-	-	Jan-30-2015	9:43 14000.00	Jan-30-2015
206	Valve	Liquid	95	Cloudy	0		Several (electric)	Y Quarterly Paradyme - use Eagle	PRV - Natural Gasoline	2-Mar-15	12:34	Mar-2-2015	14:11 20000.00	Mar-2-2015
207	Valve	Liquid	90	cloudy				Y, Operator run with Eagle	6" Gate	-	-	Jan-28-2015	13:50 27500.00	Jan-28-2015
208	Valve	Liquid	98	cloudy				Y, Operator run with Eagle	Control Valve on Rich Oil Flash Tank V-521 Control Loop	Jan-30-2015	11:53	Jan-30-2015	9:33 48700.00	Jan-30-2015
209	Valve	Liquid	50	light cloudy				Y, Operator run with Eagle	4" Gate Valve, Connect	Jan-29-2015	14:34	Jan-30-2015	10:27 128000.00	Jan-30-2015
210	Valve	Liquid	50	light cloudy				Y, Operator run with Eagle	6" Red Handle Valve	Jan-29-2015	14:25	Jan-30-2015	9:56 186000.00	Jan-30-2015
211	Valve	Liquid	90	cloudy				Y, Operator run with Eagle	1/2" Blue Valve	Jan-28-2015	10:21	Jan-29-2015	13:15 290001.00	Jan-29-2015

	raides = zero are filiden, se otive Statistics for all leak	-																			
Appendix E for Beschip	Component Information																				HIGH FLOW SAMPLER DATA
	component information			Flow #1					Flow #2						Average						CALCULATED
Sort order, sorted by				11000 #1					110W #Z						Average						CALCOLATED
Component Type, &																					
Method 21	Component Type	Service		Temperature					Temperature				Is the %CH4 a								Calculated CH4 Emissions
Concentration, ppmv			Time		Flow CFM	Bkg %	%CH4 (%)	% CFM		Flow CFM	Bkg %	%CH4		% CFM	Temperature (°C)	Temperature (°R)	Flow CFM	Bkg %	%CH4	% CFM	
				(Degree C)					(Degree C)				TVA reading?								Rate, kg/hr, STP, as methane
161	Connector	Liquid	14:49	25.8	6.0		0.000552	0.00004	25.8	5.6		0.000652		0.00004	25.80	538.11	6.250	0.000	0.000652	0.00004	4.59E-05
162	Connector	Liquid	11:21	19.7	6.9 8.3	0	0.000332	0.00004	19.70	6.9	0	0.000632		0.00004		527.13	7.600	0.000	0.000632	0.0004	
163	Connector		14:30	23.9	7.2	U	0.0079	0.00398	24	5.9	U	0.0079		0.00000	23.95	534.78	6.550	0.000	0.066	0.00398	6.81E-04 4.87E-03
164	Connector	Liquid	14:37	19.9	6.2		0.0333	0.00398	19.9	5.3		0.000		0.00389	19.90	527.49	5.750	0.000	0.000	0.00398	1.86E-03
165			15:21	28.2	6.7		0.059	0.00186	28.2	5.6		0.022		0.00117	28.20	542.43	6.150	0.000	0.03	0.00538	6.65E-03
166	Connector Connector	Liquid	14:49	19.5	6.9		0.039	0.00595	19.4	5.7		0.106		0.00538	19.45	526.68	6.300	0.000	0.096	0.00538	7.19E-03
167	Connector	Liquid	15:00	18.9	6.2		0.085	0.00387	18.9	5.2		0.106		0.00604	18.90	525.69	5.700	0.000	0.106	0.00804	2.28E-03
168	Connector	Liquid	15:04	18.8	7.8		0.0371	0.00230	18.7	6.4		0.0237		0.00134	18.75	525.69	7.100	0.000	0.0371	0.01046	1.14E-02
169	Connector		13:52	20	6.8	0	0.1341	0.01046	20.2	5.4	0	0.1487		0.00932		527.85	6.100	0.000	0.1487	0.01046	3.29E-02
170		Liquid		20.4	7.7			0.02900	20.2	6.4	0	0.00137		0.02700	20.45	528.48			0.00137		
	Flange		10:11			0	0.00137				0						7.050	0.000		0	1.08E-04
171 172	OEL OEL	Liquid	12:08 14:42	23.7	7.8 6.8	0	0.0045 0.00008	0.00000	23.60	6.3 5.6	U	0.0045 0.000019		0.00000	23.65	534.24	7.050 6.200	0.000	0.0045 0.00008	0.000	3.60E-04
173		Liquid		25.4 25	6.8	0		0.00001	25.4 25.20	5.6	0				25.40 25.10	537.39	6.200			0.00001 0	5.59E-06
173	OEL OEL	Liquid Liquid	12:13 10:39	25	7.2	0	0.00041 0.0025	0.00000	25.20	6.1	0	0.00041 0.0025		0.00000	21.60	536.85 530.55	6.650	0.000	0.00041 0.0025	0.000	2.91E-05 1.90E-04
175					1				23.20			+		0.00000		533.34					
176	OEL OEL	Liquid Liquid	12:18 15:09	23.1 23.7	8	0	0.0113 0.0279	0.00000	23.20	6.5	0	0.0113 0.0279		0.00000	23.15 23.70	533.34	7.250 7.250	0.000	0.0113 0.0279	0.000 0.000	9.31E-04 2.29E-03
177						0	0.0279		25.10	6.5	0	+		0.00000			6.600	0.000	0.0279		
178	OEL		11:45	25 27.9	7.2	0:00		0.00000	28.00	6.0	0	0.04				536.76			0.0400	0.000	3.00E-03
	OEL	Liquid	13:26		7.2	0	0.1137 0.029	0.00000		6.0	0	0.1137		0.00000	27.95 20.50	541.98 528.57	6.600 6.850	0.000	0.1137	0 00315	8.45E-03
179 180	OEL	Liquid	14:19	20.5	7.4			0.00215	20.5	6.3		0.02		0.00126				0.000		0.00215	2.14E-03
	OEL		15:30	28.2	7		0.046	0.00322	28.2	5.5		0.054		0.00297	28.20	542.43	6.250	0.000	0.054	0.00322	3.80E-03
181	Other	Liquid	11:06	26.7	6.5	0	0.0323	0.00000	26.80	5.1	0	0.0323		0.00000	26.75	539.82	5.800	0.000	0.0323	0.000	2.14E-03
182 183	Other Other	Liquid	10:59	25.8 21.7	7.8 7.9	0	0.0025	0.00000	26.00 21.60	6.5 6.5	0	0.0025		0.00000		538.29 530.64	7.150	0.000	0.0025 2.815	0.000	2.04E-04
184	Other	Liquid Liquid	10:41 11:24	19.1	10.8	0	2.62 72.88	0.20700 7.87100	19.1		0.07	3.01 85.09		0.19600 8.16200		526.05	7.200 10.200	0.000	85.09	0.2015 8.16200	2.27E-01 9.86E+00
185	Pump	Liquid	10:06	20.1	7.7	0	0.0139	0.00000	20.10	9.6 6.4	0.07	0.0139		0.00000	20.10	527.85	7.050	0.000	0.0139	0	1.09E-03
186	Pump	Liquid	15:11	23.4	7.7	0	0.0139	0.00000	23.50	5.9	0	0.0139		0.00000	23.45	533.88	6.500	0.000	0.0139	0	3.49E-03
187	Pump	Liquid	15:02	22.9	7.1	0	0.0478	0.00000	22.90	5.9	0	0.0478		0.00000		532.89	6.450	0.000	0.0478	0	8.39E-03
188	Valve	Liquid	14:33	20.1	7.4	U	0.0014	0.00010	20.1	6.1	-	0.0015		0.00009	20.10	527.85	6.750	0.000	0.0015	0.00010	1.09E-04
189	Valve	Liquid	14:24	20.4	6.9		0.0014	0.00010	20.3	6.0		0.0013		0.00040		528.30	6.450	0.000	0.0013	0.00010	4.66E-04
190	Valve		14:35	23	6.6	0	0.000678	0.00000	23.00	5.5	0	0.000678		0.00000	23.00	533.07	6.050	0.000	0.000678	0.00043	4.61E-05
191	Valve	Liquid	14:56	19.1	7.6		0.0015	0.00011	19.1	5.7		0.0009		0.00005	19.10	526.05	6.650	0.000	0.0005	0.00011	1.07E-04
192	Valve	Liquid	9:48	19.8	7.6	0	0.0013	0.00000	19.80	6.4	0	0.001		0.00000		527.31	7.000	0.000	0.001	0.00011	7.81E-05
193	Valve	Liquid	10:18	20.7	7.5	0	0.00126	0.00000	20.70	6.2	0	0.00126		0.00000	20.70	528.93	6.850	0.000	0.00126	0	9.63E-05
194	Valve	Liquid	15:10	18.6	7.8	Ť	0.0015	0.00012	18.6	6.3	Ť	0.0017		0.00011	18.60	525.15	7.050	0.000	0.0017	0.00012	1.29E-04
195	Valve	Liquid	13:10	26.9	6.4	0	0.00039	0.00000	26.90	5.2	0	0.00039		0.00000	26.90	540.09	5.800	0.000	0.00039	0	2.55E-05
196	Valve		14:29	20.3	7.1	Ŭ	0.0091	0.00065	20.2	6.1	Ť	0.0102		0.00062	20.25	528.12		0.000		0.00065	7.25E-04
197	Valve		12:51	24.2	6.6	0	0.00042	0.00000	24.30	5.5	0	0.00042		0.00000		535.32	6.050	0.000	0.00042	0	2.85E-05
198	Valve	Liquid	12:33	23.2	4.3	0	0.00107	0.00000	23.30	3.3	0	0.00107		0.00000		533.52	3.800	0.000	0.00107	0	4.57E-05
199	Valve		14:45	19.7	7.4		0.001	0.00007	19.6	6.1		0.0007		0.00004		527.04	6.750	0.000		0.00007	7.27E-05
200	Valve		15:13	18.6	6.4		0.0022	0.00014	18.5	5.1		0.003		0.00015	18.55	525.06	5.750	0.000	0.003	0.00015	1.86E-04
201	Valve	Liquid	11:20	28.3	7	0	0.001597	0.00000	28.40	5.9	0	0.001597		0.00000		542.70	6.450	0.000	0.0016	0.000	1.18E-04
202	Valve		13:20	24.7	7.3	0	0.00153	0.00000	24.60	6.0	0	0.00153		0.00000		536.04	6.650	0.000	0.00153	0	1.14E-04
203	Valve	Liquid	10:34	21.4	7.9	0	0.002	0.00000	21.40	6.4	0	0.002		0.00000		530.19	7.150	0.000	0.002	0.00000	1.60E-04
204	Valve	Liquid	14:45	22.9	7	0	0.0206	0.00000	22.90	5.8	0	0.0206		0.00000		532.89	6.400	0.000		0	1.48E-03
205	Valve	Liquid	9:43	19.6	8.3	0	0.0196	0.00000	19.70	6.8	0	0.0196		0.00000		527.04	7.550	0.000	0.0196	0	1.65E-03
206	Valve		14:11	20.5	7.2		0.0278	0.00200	20.5	6.3		0.0302		0.00190		528.57	6.750	0.000	0.0302	0.00200	2.20E-03
207	Valve		13:50	23.9	7.2	0	0.0058	0.00000	23.80	5.9	0	0.0058		0.00000		534.60	6.550	0.000	0.0058	0	4.27E-04
208	Valve	Liquid	9:36	19.1	5.3	0	0.1298	0.00000	19.30	4.5	0	0.1298		0.00000		526.23	4.900	0.000	0.1298	0	7.10E-03
209	Valve	Liquid	10:27	21	7.9	0	0.18	0.00000	21.10	6.5	0	0.18		0.00000		529.56	7.200	0.000	0.18	0	1.45E-02
210	Valve	Liquid	9:56	20	8	0	0.3	0.00000	20.00	6.7	0	0.3		0.00000		527.67	7.350	0.000	0.3	0	2.47E-02
211	Valve	Liquid	13:15	25.5	7.2	0	0.51	0.03700	25.60	6.0	0	0.61		0.03700		537.66	6.600	0.000	0.56	0.037	`
		1 7	_5.15	23.3	,.2	Ţ	5.51	3.55,00	23.00	0.0		<u> </u>		5.55700	23.33	337.30	5.550	2.000	0.55	0.007	

Component Type, & Method 21 Component Type Service Log10 TVA as CH4, Log10 CH4 EmRate, Log10 TOC of Linked Log10 TVA as CH4, Log10 TVA as CH4, Log10 CH4 EmRate, Log10 TOC of Linked Log10 TVA as CH4, Log10 CH4 EmRate, Log10 CH4 E	Appendix E for Descrip	tive Statistics for all leak																		
Second Tipe		Component Information					CANISTER DATA						TEDLAR BAG DATA							
Composed Page Composed Pag	Sort order, sorted by			CALCULATED	CALCULATED	CALCULATED										ppmv @ STP	ppmv @ STP	ppmv @ STP		ppmv @ STP
Controller Con																			58.079	78.112
Content	• • • • • • • • • • • • • • • • • • • •	Component Type	Sarvice			Log10 TOC of Linked														
1.	Concentration, ppmv	сотронен туре	Service	Log10 IVA as CH4,		TOC Emissions	Sample #	Date	Time	Can ID			Sample(s) #	Date	Time		2-Hexanone	4-Ethyltoluene	Acetone	Benzene
Mail Correction Mail	161	Cammantan	Linuid			, 6.							TD 0204/TD 020D	2 May 15	14.52	0	0	0	0	
1930							CANIOOS	lan 20 2015	11.26	050 30 0300	20 E	0				_				
1984 Convention Conventio							CANUUZ	Jan-20-2015	11.20	UEC-39-0298	26.5	U								
156 Camerior 156																				
146													•						-	
MAT Carrentific Special																				
188													I BUSSA/ I BUSSB	IVId1-2-2015	14.55				-	
158																			-	
179							NI/A	NI/A	NI/A	NI/A	NI/A	NI/A	TD0224/TD022D	Mar 2 2015	14:02					_
171							IN/A	N/A	IN/A	N/A	IN/A	N/A	I BUSSA/ I BUSSB	IVId1-2-2015	14.02					
177																_				
173							-		-	-	-	-	-		-	_				
174							CANIO12	Jan 22 2015	12.17	050 20 710	20	0	TD012	In 22 2015	12.10	_				_
175										_				_		_				
176								Jan-22-2015		OEC-39-0334				Jan-22-2015						
177								Jan. 24. 2045		-				Jan. 24. 2045						
178																_				
179										_										
180 OSE Digits OSE O							CANU15	Jan-27-2015	13:30	OEC-39-0295	28.5	U	18015	Jan-27-2015	13:32					
181																		, ,	-	
182																_				_
183																				
184							0441000	. 20 2045	10.15	050 00 0000	20.25	_	TD000	. 20 2045	10.17					
185 Pump							CAN022	Jan-30-2015	10:45	OEC-39-0303	28.25	0	TB022	Jan-30-2015	10:47	_				
186 Pump Uquid																				
187																				
188												_				_				
189 Valve Uquid							CAN019	Jan-28-2015	15:05	OEC-29-732	28.25	0	TB019	Jan-28-2015	15:06					
190																	_		-	
191																				
192																		+		
193																				
194																				
195																_		+		
196																				
197																		+		
198																_				
199																_				
200																		+		
Valve																				
Valve Liquid Valv										1			TB036A/TB036B	Mar-2-2015	15:18	_				
203 Valve Liquid Liquid ND						ļ		ļ		1						_				
204 Valve Liquid CAN018 Jan-28-2015 14:47 OEC-29-707 28.1 1 TB018 Jan-28-2015 14:50 ND						ļ														
205 Valve Liquid Indicate of the control of the cont			Liquid															+		
206 Valve Liquid 0 0 0 0 0 0 207 Valve Liquid 0 0 0 0 0 0 0 208 Valve Liquid CAN023 Jan-30-2015 10:57 OEC-29-726 28 0 TB023 Jan-30-2015 11:00 ND						ļ	CAN018	Jan-28-2015	14:47	OEC-29-707	28.1	1	TB018	Jan-28-2015	14:50					
207 Valve Liquid ND																_				
208 Valve Liquid CAN023 Jan-30-2015 10:57 OEC-29-726 28 0 TB023 Jan-30-2015 11:00 ND <			Liquid																	
209 Valve Liquid ND		Valve														ND	ND	ND		
210 Valve Liquid ND ND ND ND ND ND ND ND		Valve					CAN023	Jan-30-2015	10:57	OEC-29-726	28	0	TB023	Jan-30-2015	11:00	ND				
211 Valve Liquid CAN021 Jan-29-2015 13:19 OEC-29-731 27.5 0 TB021 Jan-29-2015 13:21 ND ND ND ND ND ND ND		Valve														ND	ND	ND	ND	ND
	211	Valve	Liquid				CAN021	Jan-29-2015	13:19	OEC-29-731	27.5	0	TB021	Jan-29-2015	13:21	ND	ND	ND	ND	ND

Note: results with all values = zero are hidden, see Appendix E for Descriptive Statistics for all leak

Appendix E for Descrip	ptive Statistics for all leak																						
	Component Information																	METHOD TO-15 Calculat			METHOD TO-15 Calcu		
Sort order, sorted by			ppmv @ STP	ppmv @ STP	ppmv @ STP			ppmv @ STP	ppmv @ STP	ppmv @ STP	ppmv @ STP	ppmv @ STP	ppmv @ STP		ppmv @ STP	ppmv @ STP	ppmv @ STP	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr
Component Type, &			76.139		84.16	46.068	88.11	106.165	100.21		86.18	60.1	100.16	92.14	105	131.4	106.165	120.19	120.19	100.16	120.1916	58.079	78.112
Method 21	Component Type	Service																					1
Concentration, ppmv		00.0.00	Carbon disulfide	Chlorobenzene	Cyclohexane	Ethanol	Ethyl Acetate	Ethylbenzene	Heptane	Hexachlorobuta	Hexane	Isopropyl	Methyl Isobutyl	Toluene	TPH Gasoline		Xylenes	1,2,4-Trimethyl-	1,3,5-Trimethyl-	2-Hexanone	4-Ethyltoluene	Acetone	Benzene
concentration, ppinv				GG. G.	C, C. C. I.			24,		diene	полине	alcohol	Ketone		(C4-C12)	(TCE)	(total)	benzene	benzene		. zunyntontent	7.00.00	50200
																							-
	uid Service, With TVA an	_											-			_							
161	Connector	Liquid	0	0	0	0	0	0	0	0	NT	0	0	0	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
162	Connector	Liquid	ND	ND 0	ND 0	ND 0	ND 0	ND 0	ND 0	ND 0	ND NT	ND 0	ND	ND 0	ND 0	ND 0	ND 0	0	0 005.00	0 005 : 00	0	0	0
163 164	Connector Connector	Liquid Liquid	0	0	0	0	0	0	0	0	NT		0	0	0	26	0	0.00E+00 0	0.00E+00 0	0.00E+00 0	0.00E+00 0	0.00E+00 0	0.00E+00 0
165			0	0	0	0	0	0	0	0	IN I	0	0	0	0	12,047	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
166	Connector Connector	Liquid Liquid	0	0	0	0	0	NT	0	0	NT	0	0	0	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
167	Connector	Liquid	0	0	0	0	0	NT	0	0	NT	0	0	0	0	0	0	0	0	0	0	0	0
168	Connector	Liquid	0	0	0	0	0	NT	0	0	NT	0	0	0	0	0	0	0	0	0	0	0	0
169	Connector	Liquid	0	0	0	0	0	0	0	NT	NT	0	0	0	0	444,119	0	0	0	0	0	0	0
170	Flange	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	140	ND	77	ND	0	0	0	0	0	0
171	OEL	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	68	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
172	OEL	Liquid	0	0	0	0	0	0	0	0	NT	0	0	0	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
173	OEL	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
174	OEL	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	0	0	0	0	0	0
175	OEL	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	68	0	0	0	0	0	0
176	OEL	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	630	630	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
177	OEL	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	68	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
178	OEL	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1200	ND	13000	ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
179	OEL	Liquid	0	0	0	0	0	0	0	NT	NT	0	0	0	0	444,119	0	0	0	0	0	0	0
180	OEL	Liquid	0	0	0	0	0	0	0	0		0	0	0	0	12,047	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
181	Other	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
182	Other	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
183	Other	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	ND	0	0	0	0	0	0
184	Other	Liquid	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0	0
185 186	Pump Pump	Liquid Liquid	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0	0	0	0	0	0
187	Pump	Liquid	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0	0	0	0	0	0
188	Valve	Liquid	0	0	0	0	0	0	0	NT NT	NT	0	0	0	0	444.119	0	0	0	0	0	0	0
189	Valve	Liquid	0	0	0	0	0	0	0	NT	NT	0	0	0	0	444,119	0	0	0	0	0	0	0
190	Valve	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	5500	150	0	0	0	0	0	0
191	Valve	Liquid	0	0	0	0	0	NT	0	0	NT	0	0	0	0	0	0	0	0	0	0	0	0
192	Valve	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	140	ND	77	ND	0	0	0	0	0	0
193	Valve	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	140	ND	77	ND	0	0	0	0	0	0
194	Valve	Liquid	0	0	0	0	0	NT	0	0	NT	0	0	0	0	0	0	0	0	0	0	0	0
195	Valve	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1200	ND	13000	ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
196	Valve	Liquid	0	0	0	0	0	0	0	NT	NT	0	0	0	0	444,119	0	0	0	0	0	0	0
197	Valve	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5500	150	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
198	Valve	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5500	150	0	0	0	0	0	0
199	Valve	Liquid	0	0	0	0	0	0	0	0	NT	0	0	0	0	26	0	0	0	0	0	0	0
200	Valve	Liquid	0	0	0	0	0	0	0	0	NT	0	563	0	0	0	0	0	0	0	0	0	0
201	Valve	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
202	Valve	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5500	150	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
203	Valve	Liquid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	140	ND	77	ND 450	0	0	0	0	0	0
204	Valve	Liquid	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND 140	ND ND	5500 77	150 ND	0	0	0	0	0	0
205 206	Valve	Liquid	ND 0	ND 0	ND 0	ND 0	ND 0	ND 0	ND 0	ND NT	ND NT	ND 0	ND 0	140	ND 0	444,119	0 0	0	0	0	0	0	0
206	Valve Valve	Liquid Liquid	0 ND	0 ND	ND	ND	ND	0 ND	0 ND	NT ND	NT ND	0 ND	ND	0 ND	0 ND	444,119 5500	150	0.00E+00	0 0.00E+00	0 0.00E+00	0.00E+00	0 0.00E+00	0 0.00E+00
207	Valve	Liquid	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	170	ND	0.00E+00 0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0
208	Valve	Liquid	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	140	ND ND	77	ND ND	0	0	0	0	0	0
210	Valve	Liquid	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	140	ND ND	77	ND ND	0	0	0	0	0	0
211	Valve	Liquid	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	140	ND	77	ND ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
211	vaive	Liquiu	IND	IND	ND	שויו	טוו	טוו	טוו	IND.	טוו	NU	IND	140	טויו	//	טוו	0.00L+00	0.00L+00	0.00L+00	0.00L+00	0.00L+00	0.00L+00

Section 2, Appendix A: Field & Lab Data & Calculations

Note: results with all values = zero are hidden, see

Appendix E for Descri	iptive Statistics for all leak																				
	Component Information																ASTM 1945/3588 Concentration Data				
Sort order, sorted by	,		kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr					
Component Type, &			76.139	112.56	84.16	46.068	88.11	106.165	100.21	86.18	60.1	100.16	92.14	105	131.4	106.165					
Method 21	Component Type	Service																			4
	Component Type	Jei vice	Corbon disulfida	Chlarahanzana	Cycloboyono	Ethonol	Ethul Asstata	Ethulbon-one	Hontono	Havana	Isopropyl	Methyl Isobutyl	Taluana	TPH Gasoline	Trichloroethene	Vulones (tetal)	Oxygen	Oxygen	Nitrogen	Nitrogen	Hydrogen
Concentration, ppmv	'		Carbon disulfide	Chlorobenzene	Cyclohexane	Ethanol	Ethyl Acetate	Ethylbenzene	Heptane	Hexane	alcohol	Ketone	Toluene	(C4-C12)	(TCE)	Xylenes (total)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)
																	i i				
B. Components in Li	iquid Service, With TVA and	d HiFlow																			
161	Connector	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0	0	21.16822471	211682247.1	78.80460381	788046038.1	0
162	Connector	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.41180768	214118076.8	78.54285769	785428576.9	0
163	Connector	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0	0	21.1376933	211376933	78.79639468	787963946.8	0
164	Connector	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	1.3195E-06	0	21.04383166	210438316.6	78.9272283	789272283	0
165	Connector	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0.000664791	0	21.1666063	211666063	78.80348439	788034843.9	0
166	Connector	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.00175247	210017524.7	78.92045961	789204596.1	0
167	Connector	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.00175247	210017524.7	78.92045961	789204596.1	0
168	Connector	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.00175247	210017524.7	78.92045961	789204596.1	0
169	Connector	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0.0238947	0	20.92242604	209224260.4	78.94515511	789451551.1	0
170	Flange	Liquid	0	0	0	0	0	0	0	0	0	0	6.31395E-06	0	4.95235E-06	0	21.00829629	210082962.9	78.41234669	784123466.9	
171	OEL	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.31393E-00	0	2.26768E-06	3.55966E-06	21.50639849	215063984.9	78.45685664	784568566.4	0
172	OEL	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0	3.33900E-00	21.30039649	211376933	78.79639468	787963946.8	0
172		-													_	0					0
173	OEL	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	1.42797E-06		21.44673979	214467397.9	78.52806812	785280681.2	0
	OEL	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	1.80132E-06	21.48455066	214845506.6	78.47044029	784704402.9	
175	OEL	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	2.33595E-06	3.66682E-06	21.50639849	215063984.9	78.45685664	784568566.4	0
176	OEL	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	4.18431E-05	3.38072E-05	21.50591971	215059197.1	78.45557927	784555792.7	0
177	OEL	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	2.11297E-06	3.31681E-06	21.50639849	215063984.9	78.45685664	784568566.4	0
178	OEL	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.98567E-05	0	0.000770251	0	21.18042688	211804268.8	78.62358513	786235851.3	0
179	OEL	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0.026796023	0	20.92242604	209224260.4	78.94515511	789451551.1	0
180	OEL	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0.000675601	0	21.1666063	211666063	78.80348439	788034843.9	0
181	Other	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0	1.5441E-06	21.48455066	214845506.6	78.47044029	784704402.9	0
182	Other	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0	1.90891E-06	21.48455066	214845506.6	78.47044029	784704402.9	0
183	Other	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	9.18644E-07	0	20.58259903	205825990.3	76.89761346	768976134.6	0
184	Other	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.53348482	215334848.2	78.44697118	784469711.8	0
185	Pump	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.23606013	212360601.3	78.68307973	786830797.3	0
186	Pump	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.23606013	212360601.3	78.68307973	786830797.3	0
187	Pump	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.23606013	212360601.3	78.68307973	786830797.3	0
188	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0.026440857	0	20.92242604	209224260.4	78.94515511	789451551.1	0
189	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0.025244187	0	20.92242604	209224260.4	78.94515511	789451551.1	0
190	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0.000302894	6.67428E-06	21.27330451	212733045.1	78.69463404	786946340.4	0
191	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.00175247	210017524.7	78.92045961	789204596.1	0
192	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	6.28308E-06	0	4.92813E-06	0	21.00829629	210082962.9	78.41234669	784123466.9	0
193	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	6.12961E-06	0	4.80776E-06	0	21.00829629	210082962.9	78.41234669	784123466.9	0
194	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.00175247	210017524.7	78.92045961	789204596.1	0
195	Valve	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.39668E-05	0	0.000679256	0	21.18042688	211804268.8	78.62358513	786235851.3	0
196	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0.025840065	0	20.92242604	209224260.4	78.94515511	789451551.1	0
197	Valve	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0.000301621	6.64623E-06	21.27330451	212733045.1	78.69463404	786946340.4	0
198	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0.000190087	4.18858E-06	21.27330451	212733045.1	78.69463404	786946340.4	0
199	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	1.5503E-06	0	21.04383166	210438316.6	78.9272283	789272283	0
200	Valve	Liquid	0	0	0	0	0	0	0	0	1.70933E-05	2.18801E-05	0	0	0	0	20.94570819	209457081.9	79.03818818	790381881.8	0
201	Valve	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0	1.70803E-06	21.48455066	214845506.6	78.47044029	784704402.9	0
202	Valve	Liquid	0.00E+00	0.00E+00		0.00E+00	0.00E+00				0.00E+00	0.00E+00	0	0	0.000331088	7.29555E-06	21.27330451		78.69463404		
203	Valve	Liquid	0	0.002.00	0	0.002.00	0	0	0.002100	0.002100	0	0.002100	6.38286E-06		5.00639E-06	0	21.00829629		78.41234669		
204	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0	0	0.000320525		21.27330451		78.69463404		
205	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	6.78022E-06	0	5.31807E-06	n	21.00829629				
206	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	0.78022E-06	0	0.02640484	0	20.92242604		78.94515511		
207	Valve	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	0.000326988	7.2052E-06	21.27330451			786946340.4	0
207	Valve	Liquid	0.00E+00 0	0.00E+00 0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0	7.63184E-06	7.2052E-06 0	21.12040622			788420199.5	0
									-		1	-				+					
209	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	6.45483E-06	0	5.06285E-06	0	21.00829629			784123466.9	
210	Valve	Liquid	0	0	0	0	0	0	0	0	0	0	6.61291E-06	0	5.18683E-06	0	21.00829629			784123466.9	
211	Valve	Liquid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.84754E-06	0	4.58652E-06	0	21.00829629	210082962.9	78.41234669	/84123466.9	0

Note: results with all values = zero are hidden, see Appendix E for Descriptive Statistics for all leak

	Component Information																		ASTM 1945/3588 Concentration Dat	19	Δ.	STM 1945/3588 Emissions (kg/hr)			_	
	component information																		A31W 1945/3588 Concentration Dat	ld	A	STIVI 1945/3588 ETHISSIONS (Rg/III)			-	
Sort order, sorted by																						31.9988	28.0134	2 01 3	28 0106	44.01
Component Type, &																						31.3388	20.0134	2.01	28.0100	44.01
Method 21	Component Type	Service	Hydroge	Carbon	Carbon	Carbon	Carbon	Methane	Methane	Ethane	Ethane	Propane	Propane	i-Butane	i-Butane	n-Butane	n-Butane	i-Pentane	i-Pentane	n-Pentane	n-Pentane				Carbon	Carbon
Concentration, ppmv			(ppb)	Dioxide	Dioxide	Monoxide		(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	(Mol%)	(ppb)	Oxygen	Nitrogen Hy	vdrogen I	Monoxide	Dioxide
			(PP2)	(Mol%)	(ppb)	(Mol%)	(ppb)	()	(PP=)	()	(PP2)	(,	(PP=/	(1110170)	(PP=)	()	(PP2)	(,	(PP~)	(1110170)	(PP~)			"	ionoxiae	Dioxide
161	Connector	Liquid	0	0.027171482	271714.8237	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.914113752	9.497423058	0	0	0.005144617
162	Connector	Liquid	0	0.045334627	453346,2653	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.684879515	11.83337936	0	0	0.010730444
163	Connector	Liquid	0	0.029744676	297446.761	0	0	0	0	0	0	0.036167344	361673.4391	0	0	0	0	0	0	0	0	3.068575718	10.01423386	0	0	0.005938902
164	Connector	Liquid	0	0.028940039	289400.3936	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.60075645	8.539527621	0	0	0.004919168
165	Connector	Liquid	0	0.029909309	299093.087	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.84443331	9.270903809	0	0	0.005528007
166	Connector	Liquid	0	0.030199871	301998.7067	0	0	0	0	0	0	0.047588049	475880.4931	0	0	0	0	0	0	0	0	2.848200179	9.369937849	0	0	0.005632974
167	Connector	Liquid	0	0.030199871	301998.7067	0	0	0	0	0	0	0.047588049	475880.4931	0	0	0	0	0	0	0	0	2.581796019	8.493528094	0	0	0.005106098
168	Connector	Liquid	0	0.030199871	301998.7067	0	0	0	0	0	0	0.047588049	475880.4931	0	0	0	0	0	0	0	0	3.217573938	10.58509442	0	0	0.006363496
169	Connector	Liquid	0	0.017229038	172290.3803	0	0	0	0	0	0	0	0	0	0	0	0	0.065364753	653647.528	0.049825055	498250.5495	2.741274977	9.055202636	0	0	0.003104697
170	Flange	Liquid	0	0.053755007	537550.0728	0	0	0.489804612	4898046.117	0.035797397	357973.9742	0	0	0	0	0	0	0	0	0	0	3.290404802	10.75164901	0	0	0.011579641
171	OEL	Liquid	0	0.036744868	367448.6827	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.393283472	10.83716007	0	0	0.007973827
172	OEL	Liquid	0	0.029744676	297446.761	0	0	0	0	0	0	0.036167344	361673.4391	0	0	0	0	0	0	0	0	2.890498909	9.433083856	0	0	0.005594253
173	OEL	Liquid	0	0.025192095	251920.9458	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.983171601	9.562556132	0	0	0.004819466
174	OEL	Liquid	0	0.04500905	450090.4961	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.240169731	10.36047592	0	0	0.00933596
175	OEL	Liquid	0	0.036744868	367448.6827	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.49543537	11.16340351	0	0	0.008213873
176	OEL	Liquid	0	0.038501021	385010.2118	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.478397281	11.10905525	0	0	0.008564679
177	OEL	Liquid	0	0.036744868	367448.6827	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.161776869	10.09779534	0	0	0.007429813
178	OEL	Liquid	0	0.038957471	389574.7105	0	0	0	0	0	0	0	0	0	0	0.031108409	311084.0893	0.03759231	375923.0994	0.042662022	426620.2222	3.056062217	9.931445336	0	0	0.007731004
179	OEL	Liquid	0	0.017229038	172290.3803	0	0	0	0	0	0	0	0	0	0	0	0	0.065364753	653647.528	0.049825055	498250.5495	3.074123804	10.15469598	0	0	0.003481673
180	OEL	Liquid	0	0.029909309	299093.087	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.890684258	9.421650212	0	0	0.005617893
181	Other	Liquid	0	0.04500905	450090.4961	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.777483303	8.881031326	0	0	0.008002814
182	Other	Liquid	0	0.04500905	450090.4961	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.433698542	10.97928628	0	0	0.009893579
183	Other	Liquid	0	0.07378612	737861.1965	0	0	0.304516402	3045164.019	1.398338436	13983384.36	0.743146554	7431465.545	0	0	0	0	0	0	0	0	3.288952891	10.75727897	0	0	0.016216226
184	Other	Liquid	0	0.019543999	195439.9896	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4.997145617	15.93734586	0	0	0.006237906
185	Pump	Liquid	0	0.034378497	343784.9668	0	0	0	0	0	0	0.022312921	223129.2142	0	0	0.024168722	241687.2232	0	0	0	0	3.330047844	10.80164768	0	0	0.007414487
186	Pump	Liquid	0	0.034378497	343784.9668	0	0	0	0	0	0	0.022312921	223129.2142	0	0	0.024168722	241687.2232	0	0	0	0	3.05519035	9.910094778	0	0	0.006802505
187	Pump	Liquid	0	0.034378497	343784.9668	0	0	0	0	0	0	0.022312921	223129.2142	0	0	0.024168722	241687.2232	0	0	0	0	3.03732114	9.852132574	0	0	0.006762719
188	Valve	Liquid	0	0.017229038	172290.3803	0	0	0	0	0	0	0	0	0	0	0	0	0.065364753	653647.528	0.049825055	498250.5495	3.033378049	10.02010128	0	0	0.003435526
189	Valve	Liquid	0	0.017229038	172290.3803	0	0	0	0	0	0	0	0	0	0	0	0	0.065364753	653647.528	0.049825055	498250.5495	2.896092285	9.566607768	0	0	0.003280039
190	Valve	Liquid	0	0.032061443	320614.4318	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.852993037	9.23938375	0	0	0.005913798
191	Valve	Liquid	0	0.030199871	301998.7067	0	0	0	0	0	0	0.047588049	475880.4931	0	0	0	0	0	0	0	0	3.010034042	9.90233485	0	0	0.005953038
192	Valve	Liquid	0	0.053755007	537550.0728	0	0	0.489804612	4898046.117	0.035797397	357973.9742	0	0	0	0	0	0	0	0	0	0	3.274317598	10.69908284	0	0	0.011523027
193	Valve	Liquid	0	0.053755007	537550.0728	0	0	0.489804612	4898046.117	0.035797397	357973.9742	0	0	0	0	0	0	0	0	0	0	3.194340009	10.43774996	0	0	0.011241568
194	Valve	Liquid	0	0.030199871	301998.7067	0	0	0	0	0	0	0.047588049	475880.4931	0	0	0	0	0	0	0	0	3.196557596	10.51595538	0	0	0.006321931
195	Valve	Liquid	0	0.038957471	389574.7105	0	0	0	0	0	0	0	0	0	0	0.031108409	311084.0893	0.03759231	375923.0994	0.042662022	426620.2222	2.695028573	8.758175408	0	0	0.006817688
196	Valve	Liquid	0	0.017229038	172290.3803	0	0	0	0	0	0	0	0	0	0	0	0	0.065364753	653647.528	0.049825055	498250.5495	2.964453303	9.792423449	0	0	0.003357463
197	Valve	Liquid	0	0.032061443	320614.4318	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.84100164	9.200549757	0	0	0.005888942
198	Valve	Liquid	0	0.032061443	320614.4318	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.790451129	5.798354519	0	0	0.003711319
199	Valve	Liquid	0	0.028940039	289400.3936	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.055668701	10.03322217	0	0	0.005779606
200	Valve	Liquid	0	0.016103623	161036.2309	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.600609895	8.591109779	0	0	0.002749929
201	Valve	Liquid	0	0.04500905	450090.4961	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.072361592	9.823907674	0	0	0.008852452
202	Valve	Liquid	0	0.032061443	320614.4318	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.118559438	10.09941736	0	0	0.006464275
203	Valve	Liquid	0	0.053755007	537550.0728	0	0	0.489804612	4898046.117	0.035797397	357973.9742	0	0	0	0	0	0	0	0	0	0	3.326314273	10.86898595	0	0	0.011706014
204	Valve	Liquid	0	0.032061443	320614.4318	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.019061657	9.777194987	0	0	0.006258032
205	Valve	Liquid	0	0.053755007	537550.0728	0	0	0.489804612	4898046.117	0.035797397	357973.9742	0	0	0	0	0	0	0	0	0	0	3.533394623	11.54563681	0	0	0.012434774
206	Valve	Liquid	0	0.017229038	172290.3803	0	0	0	0	0	0	0	0	0	0	0	0	0.065364753	653647.528	0.049825055	498250.5495	3.029246085	10.00645224	0	0	0.003430846
207	Valve	Liquid	0	0.032061443	320614.4318	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.079937649	9.974341158	0	0	0.006384218
208	Valve	Liquid	0	0.037573828	375738.2782	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.308982702	7.545852045	0	0	0.00564965
209	Valve	Liquid	0	0.053755007	537550.0728	0	0	0.489804612		0.035797397	357973.9742		0	0	0	0	0	0	0	0	0	3.3638226	10.99154728	0	0	0.011838014
210	Valve	Liquid	0	0.053755007	537550.0728	0	0	0.489804612		0.035797397	357973.9742	0	0	0	0	0	0	0	0	0	0	3.446201734	11.26072739	0	0	0.012127924
211	Valve	Liquid	0	0.053755007	537550.0728	0	0	0.489804612	4898046.117	0.035797397	357973.9742	0	0	0	0	0	0	0	0	0	0	3.047345275	9.957433442	0	0	0.010724262

Note: results with all values = zero are hidden, see

Appendix E for Descriptive Statistics for all leak

Appendix E for Descriptive Statistics for all leak										
	Component Information			1 0	1 0	. "				1 /
Sort order, sorted by			kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr
Component Type, &			16.043	30.07	44.097	58.123	58.123	72.15	72.15	CALCULATED
Method 21 Concentration, ppmv	Component Type	Service	Methane	Ethane	Propane	i-Butane	n-Butane	i-Pentane	n-Pentane	TOC, kg/hr (does not incl. TPH)
161	Connector	Liquid	0	0	0	0	0	0	0	
162	Connector	Liquid	0	0	0	0	0	0	0	
163	Connector	Liquid	0	0	0.007235545	0	0	0	0	
164	Connector	Liquid	0	0	0	0	0	0	0	
165	Connector	Liquid	0	0	0	0	0	0	0	
166	Connector	Liquid	0	0	0.008893818	0	0	0	0	
167	Connector	Liquid	0	0	0.008061942	0	0	0	0	
168	Connector	Liquid	0	0	0.010047228	0	0	0	0	
169	Connector	Liquid	0	0	0	0	0	0.019310202	0.01471943	
170	Flange	Liquid	0.038462123	0.005268775	0	0	0	0	0	
171	OEL	Liquid	0	0	0	0	0	0	0	
172	OEL	Liquid	0	0	0.006815649	0	0	0	0	
173	OEL	Liquid	0	0	0	0	0	0	0	
174	OEL	Liquid	0	0	0	0	0	0	0	
175	OEL	Liquid	0	0	0	0	0	0	0	
176	OEL	Liquid	0	0	0	0	0	0	0	
177 178	OEL OEL	Liquid	0	0	0	0	0	0	0	
	OEL	Liquid	_	0	0	0	0.008153041	0.012230076	0.013879428	
179		Liquid	0	0	0	0	0	0.02165487	0.01650668	
180 181	OEL Other	Liquid	0	0	0	0	0	0	0	
182	Other	Liquid Liquid	0	0	0	0	0	0	0	
183	Other	Liquid	0.024396078	0.209975909	0.163646703	0	0	0	0	
184	Other	Liquid	0.024396078	0.209975909	0.163646703	0	0	0	0	
185	Pump	Liquid	0	0	0.00482179	0	0.006884058	0	0	
186	Pump	Liquid	0	0	0.004423806	0	0.006315858	0	0	
187	Pump	Liquid	0	0	0.004423800	0	0.006278918	0	0	
188	Valve	Liquid	0	0	0.004397932	0	0.000278918	0.021367847	0.016287894	
189	Valve	Liquid	0	0	0	0	0	0.020400773	0.01555073	
190	Valve	Liquid	0	0	0	0	0	0.020400773	0	
191	Valve	Liquid	0	0	0.009399162	0	0	0	0	
192	Valve	Liquid	0.038274077	0.005243016	0	0	0	0	0	
193	Valve	Liquid	0.037339205	0.005114951	0	0	0	0	0	
194	Valve	Liquid	0	0	0.009981602	0	0	0	0	
195	Valve	Liquid	0	0	0	0	0.007189866	0.010785253	0.012239756	
196	Valve	Liquid	0	0	0	0	0	0.020882324		
197	Valve	Liquid	0	0	0	0	0	0	0	
198	Valve	Liquid	0	0	0	0	0	0	0	
199	Valve	Liquid	0	0	0	0	0	0	0	
200	Valve	Liquid	0	0	0	0	0	0	0	
201	Valve	Liquid	0	0	0	0	0	0	0	
202	Valve	Liquid	0	0	0	0	0	0	0	
203	Valve	Liquid	0.038881876	0.005326276	0	0	0	0	0	
204	Valve	Liquid	0	0	0	0	0	0	0	
205	Valve	Liquid	0.041302474	0.005657864	0	0	0	0	0	
206	Valve	Liquid	0	0	0	0	0	0.02133874	0.016265707	
207	Valve	Liquid	0	0	0	0	0	0	0	
208	Valve	Liquid	0	0	0	0	0	0	0	
209	Valve	Liquid	0.039320317	0.005386336	0	0	0	0	0	
210	Valve	Liquid	0.040283261	0.005518246	0	0	0	0	0	
211	Valve	Liquid	0.035620958	0.004879575	0	0	0	0	0	

Appendix B:

Correlation Plots of Mass Emission Rates vs. Leaking Equipment Concentrations

- Correlation Plot for Gas Valves
- Correlation Plot for Connectors
- Correlation Plot for Flanges
- Correlation Plot for Connectors & Flanges
- Correlation Plot for OELs and
- Correlation Plot for "Other" Components

Appendix C

- An Example Calculation of Mean Square Error Used to Calculate the Scale Bias Correction Factor for Flanges in Gas Service
- An Example Calculation of the Scale Bias Correction Factor for Flanges in Gas Service

Section 2 - Appendix C Table C-1: An Example Calculation of Mean Square Error (MSE), used to Calculate the Scale Bias Correction Factor (SBCF) for Flanges in Gas Service

To calculate the MSE follow the instructions below:

abc123 - data inputs

Step 1: Enter in all samples with concentration and mass emission measurements. Note, that if you are

looking to develop a correlation equations for

Step 2: Adjust the intercept and slope ranges depending on the number of row items.

Step 3: Adjust the count depending on the number of row items.

Step 4: Adjust the MSEri to match the number of rows.

Step 5: Adjust the summation function is the MSE equation to match the number of row.

Sample ID	X (Col AN)	Y (Col BI)	Calculated Transfe	ormation = log10()]				
(Col A)	Concentration (ppmv)	Mass Emission (kg/hr)	Concentration (ppmv)	Mass Emission (kg/hr)	Intercept (B0)	Slope (B1)	Count	MSEri	MSE
38	0.06	4.95E-02	-1.229147988	-1.305602294	-3.688648393	0.336871594	22	7.823830737	1.287220669
39	1.31	9.63E-06	0.117271296	-5.016401515				1.869395781	
40	1.77	1.06E-05	0.247973266	-4.974283634				1.874627559	
41	15.00	6.00E-05	1.176091259	-4.221684729				0.863464811	
42	40.00	3.24E-05	1.602059991	-4.489731042				1.797667282	
43	40.00	7.71E-04	1.602059991	-3.112707225				0.001314256	
44	49.00	5.68E-04	1.69019608	-3.245620159				0.015964528	
45	111.00	1.79E-03	2.045322979	-2.74623018				0.064215108	
46	300.00	3.26E-05	2.477121255	-4.487062375				2.666315931	
47	349.00	2.86E-03	2.542825427	-2.543013696				0.083537787	
48	358.00	1.58E-03	2.553883027	-2.800275589				0.000786363	
49	500.00	4.90E-03	2.698970004	-2.310069095				0.220310985	
50	700.00	5.03E-03	2.84509804	-2.298360737				0.186498693	
51	1,100.00	4.72E-03	3.041392685	-2.326121649				0.11422233	
52	1,500.00	3.69E-03	3.176091259	-2.433353588				0.034358285	
53	1,700.00	5.42E-03	3.230448921	-2.266082583				0.111769416	
54	2,000.00	6.41E-03	3.301029996	-2.193021433				0.147151816	
55	6,000.00	3.67E-02	3.77815125	-1.435492153				0.961192799	
56	7,000.00	2.42E-01	3.84509804	-0.616414324				3.157479383	
57	27,000.00	2.44E-04	4.431363764	-3.61333862				2.009280174	
58	116,000.00	7.73E-02	5.064457989	-1.111759692				0.758321664	
59	130,000.00	1.10E-03	5.113943352	-2.957222285				0.982707692	

Section 2 - Appendix C Table C-2: An Example Calculation of the Scale Bias Correction Factor (SBCF) for Flanges in Gas Service.

For correlation equation development follow the 1995 Emission Estimating Protocol (B.1.2).

abc123 - data inputs

Step 1:	Transform the data to log-log scale of the mass emissions and concentration. I prefer
	natural log but you can use log bas 10. Note if you use log base 10 the calculation for
	the SBCF will change by altering the way "T" is calculated.

Step 2a: Perform a least squares linear regression in log space.

Step 2b: Note the

Step 3: Obtain the slope and intercept from 2a.

Step 4: Calculate the mean square error (MSE). There is adequate instructions on how to do this in the 1995 protocol. I have also created a tab for the MSE.

Step 5: Plug in the MSE into the values column.

Note, in order to calculate the SBCF you should only need to plug in the values for the number of concentration/bagging pairs and MSE.

SBCF=1+((m-1)*T)/m+(((m-1)^3)*T^2)/((m^2)*i1*(m+1))+(((m-
1)^5)*T^3)/((m^3)*i2*(m+1)*(m+3))+(((m-1)^7)*T^4)/((m^4)*i3*(m+1)*(m+3)*(m+5))+(((m-1)^2)*(m+1)*(m+3)*(m+3)*(m+5))+(((m-1)^2)*(m+1)*(m+3)*
1)^9)*T^5)/((m^5)*i4*(m+1)*(m+3)*(m+5)*(m+7))+(((m-
1)^11)*T^6)/((m^6)*i5*(m+1)*(m+3)*(m+5)*(m+7)*(m+9))+(((m-
1)^13)*T^7)/((m^7)*i6*(m+1)*(m+3)*(m+5)*(m+7)*(m+9)*(m+11))+(((m-
1)^15)*T^8)/((m^8)*i7*(m+1)*(m+3)*(m+5)*(m+7)*(m+9)*(m+11)*(m+13))+(((m-

1)^17)*T^9)/((m^9)*i8*(m+1)*(m+3)*(m+5)*(m+7)*(m+9)*(m+11)*(m+13)*(m+15))+(((m-1)^19)*T^10)/((m^10)*i9*(m+1)*(m+3)*(m+5)*(m+7)*(m+9)*(m+11)*(m+13)*(m+15)*(m+17))+((

1)^21)*T^11)/((m^11)*i10*(m+1)*(m+3)*(m+5)*(m+7)*(m+9)*(m+11)*(m+13)*(m+15)*(m+17)*(m+19))+(((m-

 $1)^23)^*T^12)/((m^12)^*i11^*(m+1)^*(m+3)^*(m+5)^*(m+7)^*(m+9)^*(m+11)^*(m+13)^*(m+15)^*(m+17)^*(m+19)^*(m+21))+(((m-10)^2)^*(m+10)^*$

 $1)^25)^*T^13)/((m^13)^*i12^*(m+1)^*(m+3)^*(m+5)^*(m+7)^*(m+9)^*(m+11)^*(m+13)^*(m+15)^*(m+17)^*(m+19)^*(m+21)^*(m+23))^*((m-1)^*(m+10)^*(m+1$

1)^27)*T^14)/((m^14)*i13*(m+1)*(m+3)*(m+5)*(m+7)*(m+9)*(m+11)*(m+13)*(m+15)*(m+17)*(m+19)*(m+21)*(m+23)*(m+25))+(((m-

1\^29*T^15\/((m^15*i14*(m+1)*(m+3*(m+5*(m+7*(m+9*(m+11*(m+13*(m+15*(m+17*

Formulas	V	'alues
MSE=;	MSE	1.287220669
n=;	n	22
T=MSE/2 x ln(10^2);	Т	3.412356416
m=n-1;	m	21
i1=2*1;	i1	2
i2=3*2*1;	i2	6
i3=4*3*2*1;	i3	24
i4=5*4*3*2*1;	i4	120
i5=6*5*4*3*2*1;	i5	720
i6=7*6*5*4*3*2*1;	i6	5040
i7=8*7*6*5*4*3*2*1;	i7	40320
i8=9*8*7*6*5*4*3*2*1;	i8	362880
i9=10*9*8*7*6*5*4*3*2*1;	i9	3628800
i10=11*10*9*8*7*6*5*4*3*2*1;	i10	39916800
i11=12*11*10*9*8*7*6*5*4*3*2*1;	i11	479001600
i12=13*12*11*10*9*8*7*6*5*4*3*2*1;	i12	6227020800
i13=14*13*12*11*10*9*8*7*6*5*4*3*2*1;	i13	87178291200
i14=15*14*13*12*11*10*9*8*7*6*5*4*3*2*1;	i14	1.30767E+12
	SBCF [1]	17.975

Note: In(10^2)=

0^2)= 5.3018981

Note: This current goes up to i13 due to processing limitation in MS Excel.

Eqpt	R^2	N	MSE	T	SBCF	В0	B1	C1 =(SBCF) x 10^b0
V	0.609	33	0.8932008	2.3678298	8.6458	-5.815062685	0.8118	1.3236E-05
С	0.635	37	0.5166433	1.369595	3.6238	-5.368188432	0.6848	1.5523E-05
F	0.185	22	1.2872207	3.4123564	17.9753	-3.688648393	0.3369	3.6815E-03
C + F	0.352	59	0.9251642	2.4525633	10.1849	-4.387074589	0.4666	4.1772E-04
OELs	0.753	34	0.604349	1.6020985	4.4356	-4.735842576	0.7157	8.1490E-05
Other	0.645	34	0.5908473	1.566306	4.2958	-5.280052948	0.7902	2.2542E-05

Appendix D:

• Notes to Updated Calculations 08/20/2019

Notes to this updated report: 08/20/2019:

- 1) The general forms of the equations presented in the report text, section 2.2, shows sample volume correction terms for both temperature and pressure from ambient to standard conditions at 25 C, 29.92 mmHg. A communication from the Bacharach flow measurement device vendor pertaining to temperature and pressure correction, stated that the Hi Flow Sampler automatically corrects from ambient to a Standard Temperature of 20 C, but does not correct for pressure. Therefore, the general temperature-pressure corrections of "(Tstd/Tact)(Pact/Pstd)" to a standard molar volume of 24.45 L at STP of 25 C, 29.92 mmHg is corrected in the spreadsheet calculations to "(298.15 K / 293.15 K)(Tstd/Tact)".
- 2) During a review of the temperature-pressure correction issue, four ambient pressure outliers for the date 08/06/2015 were noted for sample #s 1, 57, 159, and 160 were found, each = 20.73. A review of the original field data sheets was made, and the first three values were corrected to 29.73 mmHg, and the value for sample #160 was corrected to 29.74 mmHg.
- 3) The SBCF values calculations are calcuated in accordance with the procedure in the 1995 EPA Protocol, Section B.1.2, where the value of T, used in the calculation of the SBCF, T (when regression performed using base 10 logarithms) = (MSE/2)×((In10)2).

Appendix E:

Average Emission Rates for Components in Liquid Service

Appendix E: Average Emissions Rates for Components in Liquid Service

The initial sample matrix design for the components in liquid service was the same as for the components in gas service, six (6) components per each combination of five concentration ranges and five (5) component types, for a total of 150 sets of results. The 1995 EPA protocol requires at least four (4) sets of data for each combination, for a total of 100 sets of results, for the correlation to be considered acceptable. During the course of the project it was determined that the rate of discovery of components in liquid service would fall well below either of these goals. Therefore, no attempt was made to prepare any correlations for components in liquid service. The statistics below were calculated from the collected field measurements and calculated emission rates for components in liquid service.

Average Emission Rates for Components in Liquid Service, kg/hr as methane											
Component Type	Emission Rate	N									
Valves	2.08E-04	24									
Connectors	3.65E-04	9									
Flanges	2.06E-08	1									
Connectors & Flanges	3.29E-04	10									
OELs	2.11E-05	10									
Pumps	5.82E-05	3									
Other	5.82E-05	3									

Appendix F:

Pneumatic Device Test Results

Pneumatic Device Test Results

	SAN	MPLING D	OATA			HIGI		EMISSIONS			
Date	Pressure (inHg)	TVA Reading (ppm)	PFC Type	Time	Bkg %	1-2%	Avg Temp (°C)	Flow (CFM)	CH4 Leak %	(kg/hr)	(Tons/ Year)
8/12/2015	30.02	262,500	Flextube®	13:11	0	12.9	33.3	7.9	3.33	0.287	2.768
8/12/2015	30.01	189,167	Flextube®	13:24	0.2	14.1	33.3	3.6	6.5	0.247	2.385
8/13/2015	30.02	> 625,000	Flextube®	10:27	0	3.9	25	6.6	2.08	0.154	1.484
8/13/2015	30.02	> 625,000	Flextube®	11:33	0.1	3.2	29.5	5.8	3.17	0.199	1.925
8/13/2015	30	> 625,000	Flextube®	12:28	0.3	4	30.6	6.7	3.81	0.259	2.501
8/13/2015	29.98	> 625,000	Flextube®	13:25	0	5.5	33.6	6.8	4.9	0.362	3.494
8/14/2015	30.03	> 416,667	Kimray®	12:49	0	63	34.6	7.4	0.05	0.004	0.039
8/14/2015	30.03	> 416,667	Flextube®	12:54	0.3	26.2	35.2	6.7	10.3	0.725 1	7.002 1
8/14/2015	30.03	> 416,667	Kimray®	13:01	0.1	10.8	35.9	4.5	1.88	0.087	0.836
8/14/2015 8/14/2015	30.01	41,667	Kimray® Flextube®	14:21 14:26	0	2.1	34.6 35.6	6.8	0.23 2.07	0.017 0.149	0.164 1.44
8/14/2015	30.01	37,500 2,800	Kimray®	14:26	0.1	5.1	36.9	7 6.7	0.41	0.149	0.28
8/14/2015	30.01	8,600	Kimray® Kimray®	14:39	0	0	38.1	6.2	0.41	0.025	0.442
0/11/2015	30	>	Timmuj O	11.57	Ü	0	30.1	0.2	0.7	0.010	0.112
8/14/2015	30	416,667	Flextube®	14:44	0.1	1.5	38.8	6.7	2.12	0.146	1.408
8/17/2015	29.85	> 416,667	Flextube®	10:40	0	4.5	27.2	6.6	3.25	0.235	2.272
8/17/2015	29.84	16,000	Kimray®	11:51	0	1.6	32.8	6.9	0.15	0.011	0.105
8/17/2015	29.79	211,667	Flextube®	14:22	0.1	1.9	35.7	7.25	4.18	0.318	3.068

¹ Inconsistent Test Results - data not used

Appendix G:

Project Sample Logbook

CARB Sample Logbook

Sent	Sample No.	Site No.	Date	Time	Vi	Vf	Can ID	Comment
1/20/2015	TB001	01	1/20/2015	10:55				
1/23/2015	CAN001	01	1/23/2015	10:51	28.5	0	DEC-117-39	
1/20/2015	TB002	01	1/20/2015	11:27				
1/23/2015	CAN002	01	1/23/2015	11:26	28.5	0	DEC-39-0298	
1/20/2015	TB003	02	1/20/2015	15:16				
1/23/2015	CAN003	02	1/23/2015	15:10	28.25	0	DEC-29-706	
1/21/2015	TB004	03	1/21/2015	12:04				
1/23/2015	CAN004	03	1/23/2015	11:55	28.5	0	DEC-29-704	
1/21/2015	TB005	03	1/21/2015	12:42				
1/23/2015	CAN005	03	1/23/2015	12:40	28	5.6	DEC-117-32	
1/21/2015	TB006	04	1/21/2015	15:20				
1/23/2015	CAN006	04	1/23/2015	15:15	28.5	0	DEC-39-0304	
1/22/2015	TB007	05	1/22/2015	10:45				
1/23/2015	CAN007	05	1/23/2015	10:42	28.5	0	DEC-39-0334	
1/22/2015	TB008	05	1/22/2015	11:40				
1/23/2015	CAN008	05	1/23/2015	11:37	28	0	DEC-117-42	
1/22/2015	TB009	06	1/22/2015	14:50				
1/23/2015	CAN009	06	1/23/2015	14:49	28.75	0	DEC-39-0296	
1/23/2015	TB010	07	1/23/2015	10:52				
1/23/2015	CAN010	07	1/23/2015	10:48	28.5	0	DEC-29-701	
1/23/2015	TB011	07	1/23/2015	12:04				
1/23/2015	CAN011	07	1/23/2015	12:03	28.5	0	DEC-29-702	
1/23/2015	TB012	07	1/23/2015	12:19				
1/23/2015	CAN012	07	1/23/2015	12:17	29	0	DEC-29-716	
1/26/2015	TB013	08	1/26/2015	12:08				
1/30/2015	CAN013	08	1/30/2015	12:06	27.5	0	DEC-117-11	
1/27/2015	TB014	09	1/27/2015	12:43				

Sent	Sample No.	Site No.	Date	Time	Vi	Vf	Can ID	Comment
1/30/2015	CAN014	09	1/30/2015	12:41	28.5	0	DEC-39-0339	
1/27/2015	TB015	09	1/27/2015	13:32				
1/30/2015	CAN015	09	1/30/2015	13:30	28.5	0	DEC-39-0295	
1/27/2015	TB016	09	1/27/2015	14:20				
1/30/2015	CAN016	09	1/30/2015	14:18	27	0	DEC-29-728	
1/28/2015	TB017	09	1/28/2015	14:16				
1/30/2015	CAN017	09	1/30/2015	14:11	28.5	0	DEC-117-34	
1/28/2015	TB018	09	1/28/2015	14:50				
1/30/2015	CAN018	09	1/30/2015	14:47	28.1	1	DEC-29-707	
1/28/2015	TB019	09	1/28/2015	15:06				
1/30/2015	CAN019	09	1/30/2015	15:05	28.25	0	DEC-29-732	
1/29/2015	TB020	09	1/29/2015	10:38				
1/30/2015	CAN020	09	1/30/2015	10:36	28.25	0	DEC-29-708	
1/29/2015	TB021	09	1/29/2015	13:21				
1/30/2015	CAN021	09	1/30/2015	13:19	27.5	0	DEC-29-731	
1/30/2015	TB022	09	1/30/2015	10:47				
1/30/2015	CAN022	09	1/30/2015	10:45	28.25	0	DEC-39-0303	
1/30/2015	TB023	09	1/30/2015	11:00				
1/30/2015	CAN023	09	1/30/2015	10:57	28	0	DEC-29-726	
2/23/2015	TB024A	10	2/23/2015	11:01				
2/23/2015	TB024B	10	2/23/2015	11:03				
2/23/2015	TB025A	10	2/23/2015	11:34				
2/23/2015	TB025B	10	2/23/2015	11:36				
2/24/2015	TB026A	11	2/24/2015	10:15				
2/24/2015	TB26B	11	2/24/2015	10:15				
2/24/2015	TB27A	11	2/24/2015	13:40				
2/24/2015	TB27B	11	2/24/2015	13:40				-
2/25/2015	TB28A	12	2/25/2015	14:02				
2/25/2015	TB28B	12	2/25/2015	14:02				

Sent	Sample No.	Site No.	Date	Time	Vi	Vf	Can ID	Comment
2/25/2015	TB29A	12	2/25/2015	14:51				
2/25/2015	TB29B	12	2/25/2015	14:51				
2/26/2015	TB30A	12	2/26/2015	13:53				
2/26/2015	TB30B	12	2/26/2015	13:53				
2/26/2015	TB31A	12	2/26/2015	14:20				
2/26/2015	TB31B	12	2/26/2015	14:20				
2/26/2015	TB32A	13	2/26/2015	15:15				
2/26/2015	TB32B	13	2/26/2015	15:15				
3/2/2015	TB33A	14	3/2/2015	14:02				
3/2/2015	TB33B	14	3/2/2015	14:02				
3/2/2015	TB34A	14	3/2/2015	14:40				
3/2/2015	TB34B	14	3/2/2015	14:40				
3/2/2015	TB35A	14	3/2/2015	14:53				
3/2/2015	TB35B	14	3/2/2015	14:53				
3/2/2015	TB36A	14	3/2/2015	15:18				
3/2/2015	TB36B	14	3/2/2015	15:18				
3/3/2015	TB37A	15	3/3/2015	16:30				
3/3/2015	TB37B	15	3/3/2015	16:30				
3/3/2015	TB38A	15	3/3/2015	16:30				
3/3/2015	TB38B	15	3/3/2015	16:30				
3/3/2015	TB39A	15	3/3/2015	16:30				
3/3/2015	TB39B	15	3/3/2015	16:30				
8/6/2015	TB40A	16	8/6/2015	13:58				
8/6/2015	TB40B	16	8/6/2015	13:59				
8/6/2015	TB41A	17	8/6/2015	14:35				
8/6/2015	TB41B	17	8/6/2015	14:37				
8/7/2015	TB42A	18	8/7/2015	14:36				
8/7/2015	TB42B	18	8/7/2015	14:36				
8/7/2015	TB43A	19	8/7/2015	14:36				

Sent	Sample No.	Site No.	Date	Time	Vi	Vf	Can ID	Comment
8/7/2015	TB43B	19	8/7/2015	14:36				
8/11/2015	TB44A	20	8/11/2015	17:15				
8/11/2015	TB44B	20	8/11/2015	17:15				
8/11/2015	TB45A	21	8/11/2015	17:15				
8/11/2015	TB45B	21	8/11/2015	17:15	-			
8/12/2015	TB46A	22	8/12/2015	15:15				
8/12/2015	TB46B	22	8/12/2015	15:15				
8/12/2015	TB47A	23	8/12/2015	15:15				
8/12/2015	TB47B	23	8/12/2015	15:15				
8/12/2015	TB48A	24	8/12/2015	15:15				
8/12/2015	TB48B	24	8/12/2015	15:15				
8/13/2015	TB49A	25	8/13/2015	15:15				
8/13/2015	TB49B	25	8/13/2015	15:15				
8/13/2015	TB50A	26	8/13/2015	15:15				
8/13/2015	TB50B	26	8/13/2015	15:15				
8/14/2015	TB51A	27	8/14/2015	10:33				
8/14/2015	TB51B	27	8/14/2015	10:33				
8/14/2015	TB52A	28	8/14/2015	12:35				
8/14/2015	TB52B	28	8/14/2015	12:35				
8/14/2015	TB53A	29	8/14/2015	14:09				

Appendix H:

Analytical Results

Sage Environmental Consulting Project: CARB
720 West Arapaho Road Project Number: CARB #1344 Reported:
Richardson TX, 75080 Project Manager: David Ranum 04-Feb-15 16:10

CAN001 1500318-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1		Limit				-	-		

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15							
Acetone	ND	44	ppbv	21.83	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod
Benzene	ND	11	"	"	"	"	"	"
Benzyl chloride	ND	11	"	"	"	"	"	"
Bromodichloromethane	ND	11	"	"	"	"	"	"
Bromoform	ND	11	"	"	"	"	"	"
Bromomethane	ND	11	"	"	"	"	"	"
1,3-Butadiene	ND	11	"	"	"	"	"	"
Carbon disulfide	ND	11	"	"	"	"	"	"
Carbon tetrachloride	ND	11	"	"	"	"	"	"
Chlorobenzene	ND	11	"	"	"	"	"	"
Chloroethane	ND	11	"	"	"	"	"	"
Chloroform	ND	11	"	"	"	"	"	"
Chloromethane	ND	11	"	"	"	"	"	"
Cyclohexane	40	11	"	"	"	"	"	"
Dibromochloromethane	ND	11	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	11	"	"	"	"	"	"
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethane	ND	11	"	"	"	"	"	"
1,2-Dichloroethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethene	ND	11	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
1,2-Dichloropropane	ND	11	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	11	"	"	"	"	"	"
Diisopropyl Ether	ND	11	"	"	"	"	"	"
1,4-Dioxane	ND	11	"	"	"	"	"	"
Ethanol	ND	44	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN001 1500318-01 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

hyl Acetate	ND	11	ppbv	21.83	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod
hylbenzene	ND	11	"	"	"	"	"	"
hyl t-Butyl Ether	ND	11	"	"	"	"	"	"
Ethyltoluene	ND	11	"	"	"	"	"	"
eptane	ND	11	"	"	"	"	"	"
exachlorobutadiene	ND	11	"	"	"	"	"	"
exane	44	11	"	"	"	"	"	"
Hexanone	ND	11	"	"	"	"	"	"
opropyl alcohol	ND	11	"	"	"	"	"	"
ethylene chloride	ND	11	"	"	"	"	"	"
ethyl Ethyl Ketone	ND	11	"	"	"	"	"	"
ethyl Isobutyl Ketone	ND	11	"	"	"	"	"	"
ethyl-t-butyl ether	ND	11	"	"	"	"	"	"
phthalene	ND	22	"	"	"	"	"	"
ppylene	ND	11	"	"	"	"	"	"
rene	ND	11	"	"	"	"	"	"
myl Methyl Ether	ND	11	"	"	"	"	"	"
utyl alcohol	ND	11	"	"	"	"	"	"
,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"
rachloroethene (PCE)	ND	11	"	"	"	"	"	"
rahydrofuran	ND	11	"	"	"	"	"	"
uene	ND	11	"	"	"	"	"	"
,4-Trichlorobenzene	ND	11	"	"	"	"	"	"
,1-Trichloroethane	ND	11	"	"	"	"	"	"
,2-Trichloroethane	ND	11	"	"	"	"	"	"
chloroethene (TCE)	ND	11	"	"	"	"	"	"
chlorofluoromethane	ND	11	"	"	"	"	"	"
,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"
4-Trimethylbenzene	ND	11	"	"	"	"	"	"
,5-Trimethylbenzene	ND	11	"	"	"	"	"	"
yl acetate	ND	11	"	"	"	"	"	"
nyl chloride	ND	11	"	"	"	"	"	"
ylenes (total)	ND	11	"	"	"	"	"	"
PH Gasoline (C4-C12)	4800	4400	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN002 1500318-02 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

	Oilfield Envir	onme	ental a	nd Co	mplian	ce		
Volatile Organic Compour	nds by EPA Method TO-15							
Acatomo	ND	12		21.5	DE 4 0712	27 1 15	27 1 15	TO 15 1

Acetone	ND	43	ppbv	21.5	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod.
Benzene	ND	11	"	"	"	"	"	"
Benzyl chloride	ND	11	"	"	"	"	"	"
Bromodichloromethane	ND	11	"	"	"	"	"	"
Bromoform	ND	11	"	"	"	"	"	"
Bromomethane	ND	11	"	"	"	"	"	"
1,3-Butadiene	ND	11	"	"	"	"	"	"
Carbon disulfide	ND	11	"	"	"	"	"	"
Carbon tetrachloride	ND	11	"	"	"	"	"	"
Chlorobenzene	ND	11	"	"	"	"	"	"
Chloroethane	ND	11	"	"	"	"	"	"
Chloroform	ND	11	"	"	"	"	"	"
Chloromethane	ND	11	"	"	"	"	"	"
Cyclohexane	ND	11	"	"	"	"	"	"
Dibromochloromethane	ND	11	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	11	"	"	"	"	"	"
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethane	ND	11	"	"	"	"	"	"
1,2-Dichloroethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethene	ND	11	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
1,2-Dichloropropane	ND	11	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	11	"	"	"	"	"	"
Diisopropyl Ether	ND	11	"	"	"	"	"	"
1,4-Dioxane	ND	11	"	"	"	"	"	"
Ethanol	ND	43	"	"	"	"	"	"
Ethyl Acetate	ND	11	"	"	"	"	"	"
Ethylbenzene	ND	11	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	11	"	"	"	"	"	"
4-Ethyltoluene	ND	11	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

R-01

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN002 1500318-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA	A Method TO-15								R-01
Heptane	ND	11	ppbv	21.5	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod.	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Hexane	ND	11	"	"	"	"	"	"	
2-Hexanone	ND	11	"	"	"	"	"	"	
Isopropyl alcohol	ND	11	"	"	"	"	"	"	
Methylene chloride	ND	11	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	11	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	11	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	11	"	"	"	"	"	"	
Naphthalene	ND	22	"	"	"	"	"	"	
Propylene	ND	11	"	"	"	"	"	"	
Styrene	ND	11	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	11	"	"	"	"	"	"	
t-Butyl alcohol	ND	11	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	11	"	"	"	"	"	"	
Tetrahydrofuran	ND	11	"	"	"	"	"	"	
Toluene	ND	11	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	11	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	11	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	11	"	"	"	"	"	"	
Trichlorofluoromethane	ND	11	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	11	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	11	"	"	"	"	"	"	
Vinyl acetate	ND	11	"	"	"	"	"	"	
Vinyl chloride	ND	11	"	"	"	"	"	"	
Xylenes (total)	ND	11	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	4300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Acetone

Oilfield Environmental and Compliance, INC.

Volatile Organic Compounds by EPA Method TO-15

Sage Environmental Consulting Project: CARB 720 West Arapaho Road Project Number: CARB #1344 Reported: Richardson TX, 75080 Project Manager: David Ranum 04-Feb-15 16:10

CAN003 1500318-03 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1		Limit				1			

Oilfield Environmental and Compliance

ppbv

21.5

B5A0713 27-Jan-15

27-Jan-15 TO-15 mod.

43

Benzene	78	11	"	"	"	"	"	"
Benzyl chloride	ND	11	"	"	"	"	"	"
Bromodichloromethane	ND	11	"	"	"	"	"	"
Bromoform	ND	11	"	"	"	"	"	"
Bromomethane	ND	11	"	"	"	"	"	"
1,3-Butadiene	ND	11	"	"	"	"	"	"
Carbon disulfide	ND	11	"	"	"	"	"	"
Carbon tetrachloride	ND	11	"	"	"	"	"	"
Chlorobenzene	ND	11	"	"	"	"	"	"
Chloroethane	ND	11	"	"	"	"	"	"
Chloroform	ND	11	"	"	"	"	"	"
Chloromethane	ND	11	"	"	"	"	"	"
Cyclohexane	1600	54	"	107.5	B5A0773	28-Jan-15	28-Jan-15	"
Dibromochloromethane	ND	11	"	21.5	B5A0713	27-Jan-15	27-Jan-15	"
1,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	11	"	"	"	"	"	"
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethane	ND	11	"	"	"	"	"	"
1,2-Dichloroethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethene	ND	11	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
1,2-Dichloropropane	ND	11	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"

11

11 11

11

43

11

11

11

11

Oilfield Environmental and Compliance

trans-1,3-Dichloropropene

Diisopropyl Ether

1,4-Dioxane

Ethyl Acetate

Ethylbenzene

4-Ethyltoluene

Ethyl t-Butyl Ether

Ethanol

1,2-Dichloro-1,1,2,2-tetrafluoroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772

FAX: (805) 925-3376

307 Roemer Way, Suite 300, Santa Maria, CA 93454

ND

ND

ND

ND

ND

ND

78

ND

210

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN003 1500318-03 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Τ., ρ	Units	Dilution	Batch	Prepared		Method	Notes
--	---------	--------	-------	-------	----------	-------	----------	--	--------	-------

Oilfield Environmental and Compliance

Heptane	460	11	ppbv	21.5	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod
Hexachlorobutadiene	ND	11	"	"	"	"	"	"
Hexane	2600	54	"	107.5	B5A0773	28-Jan-15	28-Jan-15	"
2-Hexanone	ND	11	"	21.5	B5A0713	27-Jan-15	27-Jan-15	"
Isopropyl alcohol	130	11	"	"	"	"	"	"
Methylene chloride	ND	11	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	11	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	11	"	"	"	"	"	"
Methyl-t-butyl ether	ND	11	"	"	"	"	"	"
Naphthalene	ND	22	"	"	"	"	"	"
Propylene	ND	11	"	"	"	"	"	"
Styrene	ND	11	"	"	"	"	"	"
-Amyl Methyl Ether	ND	11	"	"	"	"	"	"
-Butyl alcohol	ND	11	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	11	"	"	"	"	"	"
Tetrahydrofuran	ND	11	"	"	"	"	"	"
Toluene	80	11	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	11	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	11	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"
Trichloroethene (TCE)	ND	11	"	"	"	"	"	"
Trichlorofluoromethane	ND	11	"	"	"	"	"	"
1,1,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"
1,2,4-Trimethylbenzene	390	11	"	"	"	"	"	"
,3,5-Trimethylbenzene	160	11	"	"	"	"	"	"
Vinyl acetate	ND	11	"	"	"	"	"	"
Vinyl chloride	ND	11	"	"	"	"	"	"
Xylenes (total)	290	11	"	"	"	"	"	"
ΓΡΗ Gasoline (C4-C12)	90000	22000	"	107.5	B5A0773	28-Jan-15	28-Jan-15	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN004 1500318-04 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental	and (Compliance
------------------------	-------	------------

Acetone	ND	34	ppbv	17	B5A0773	28-Jan-15	28-Jan-15	TO-15 mod
Benzene	ND	8.5	"	"	"	"	"	"
Benzyl chloride	ND	8.5	"	"	"	"	"	"
Bromodichloromethane	ND	8.5	"	"	"	"	"	"
Bromoform	ND	8.5	"	"	"	"	"	"
Bromomethane	ND	8.5	"	"	"	"	"	"
1,3-Butadiene	ND	8.5	"	"	"	"	"	"
Carbon disulfide	ND	8.5	"	"	"	"	"	"
Carbon tetrachloride	ND	8.5	"	"	"	"	"	"
Chlorobenzene	ND	8.5	"	"	"	"	"	"
Chloroethane	ND	8.5	"	"	"	"	"	"
Chloroform	ND	8.5	"	"	"	"	"	"
Chloromethane	ND	8.5	"	"	"	"	"	"
Cyclohexane	33	8.5	"	"	"	"	"	"
Dibromochloromethane	ND	8.5	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	8.5	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	8.5	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	8.5	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	8.5	"	"	"	"	"	"
Dichlorodifluoromethane	ND	8.5	"	"	"	"	"	"
1,1-Dichloroethane	ND	8.5	"	"	"	"	"	"
1,2-Dichloroethane	ND	8.5	"	"	"	"	"	"
1,1-Dichloroethene	ND	8.5	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	8.5	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	8.5	"	"	"	"	"	"
1,2-Dichloropropane	ND	8.5	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	8.5	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	8.5	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.5	"	"	"	"	"	"
Diisopropyl Ether	ND	8.5	"	"	"	"	"	"
1,4-Dioxane	ND	8.5	"	"	"	"	"	"
Ethanol	ND	34	"	"	"	"	"	"
Ethyl Acetate	ND	8.5	"	"	"	"	"	"
Ethylbenzene	16	8.5	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	8.5	"	"	"	"	"	"
4-Ethyltoluene	31	8.5	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN004 1500318-04 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Ieptane	32	8.5	ppbv	17	B5A0773	28-Jan-15	28-Jan-15	TO-15 mod
Iexachlorobutadiene	ND	8.5	"	"	"	"	"	"
Iexane	35	8.5	"	"	"	"	"	"
-Hexanone	ND	8.5	"	"	"	"	"	"
sopropyl alcohol	ND	8.5	"	"	"	"	"	"
Methylene chloride	ND	8.5	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	8.5	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	8.5	"	"	"	"	"	"
Methyl-t-butyl ether	ND	8.5	"	"	"	"	"	"
Vaphthalene	ND	17	"	"	"	"	"	"
ropylene	ND	8.5	"	"	"	"	"	"
tyrene	ND	8.5	"	"	"	"	"	"
Amyl Methyl Ether	ND	8.5	"	"	"	"	"	"
Butyl alcohol	ND	8.5	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	8.5	"	"	"	"	"	"
etrachloroethene (PCE)	ND	8.5	"	"	"	"	"	"
etrahydrofuran	ND	8.5	"	"	"	"	"	"
oluene	30	8.5	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	8.5	"	"	"	"	"	"
1,1-Trichloroethane	ND	8.5	"	"	"	"	"	"
1,2-Trichloroethane	ND	8.5	"	"	"	"	"	"
richloroethene (TCE)	ND	8.5	"	"	"	"	"	"
richlorofluoromethane	ND	8.5	"	"	"	"	"	"
1,2-Trichlorotrifluoroethane	ND	8.5	"	"	"	"	"	"
2,4-Trimethylbenzene	44	8.5	"	"	"	"	"	"
3,5-Trimethylbenzene	10	8.5	"	"	"	"	"	"
inyl acetate	ND	8.5	"	"	"	"	"	"
inyl chloride	ND	8.5	"	"	"	"	"	"
Xylenes (total)	68	8.5	"	"	"	"	"	"
TPH Gasoline (C4-C12)	4800	3400	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Acetone

Oilfield Environmental and Compliance, INC.

Volatile Organic Compounds by EPA Method TO-15

ND

ND

ND

ND

210

ND

78

ND

40

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN005 1500318-05 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

ppbv

77.5

B5A0713 27-Jan-15

27-Jan-15 TO-15 mod.

160

Benzene	2200	39	"	"	"	"	"	"
Benzyl chloride	ND	39	"	"	"	"	"	"
Bromodichloromethane	ND	39	"	"	"	"	"	"
Bromoform	ND	39	"	"	"	"	"	"
Bromomethane	ND	39	"	"	"	"	"	"
1,3-Butadiene	ND	39	"	"	"	"	"	"
Carbon disulfide	ND	39	"	"	"	"	"	"
Carbon tetrachloride	ND	39	"	"	"	"	"	"
Chlorobenzene	ND	39	"	"	"	"	"	"
Chloroethane	ND	39	"	"	"	"	"	"
Chloroform	ND	39	"	"	"	"	"	"
Chloromethane	ND	39	"	"	"	"	"	"
Cyclohexane	4400	390	"	775	B5A0773	28-Jan-15	28-Jan-15	"
Dibromochloromethane	ND	39	"	77.5	B5A0713	27-Jan-15	27-Jan-15	"
1,2-Dibromoethane (EDB)	ND	39	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	39	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	39	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	39	"	"	"	"	"	"
Dichlorodifluoromethane	ND	39	"	"	"	"	"	"
1,1-Dichloroethane	ND	39	"	"	"	"	"	"
1,2-Dichloroethane	ND	39	"	"	"	"	"	"
1,1-Dichloroethene	ND	39	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	39	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	39	"	"	"	"	"	"
1,2-Dichloropropane	ND	39	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	39	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	39	"	"	"	"	"	"

39 39

39

160

39

39

39

39

Oilfield Environmental and Compliance

1,2-Dichloro-1,1,2,2-tetrafluoroethane

Diisopropyl Ether

1.4-Dioxane

Ethyl Acetate

Ethylbenzene

4-Ethyltoluene

Ethyl t-Butyl Ether

Ethanol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN005 1500318-05 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA Method TO-15

Heptane	1900	390	ppbv	775	B5A0773	28-Jan-15	28-Jan-15	TO-15 mod.
Hexachlorobutadiene	ND	39	"	77.5	B5A0713	27-Jan-15	27-Jan-15	"
Hexane	10000	390	"	775	B5A0773	28-Jan-15	28-Jan-15	m .
2-Hexanone	ND	39	"	77.5	B5A0713	27-Jan-15	27-Jan-15	"
Isopropyl alcohol	680	39	"	"	"	"	"	"
Methylene chloride	ND	39	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	39	"	"	"	"	"	"
Methyl Isobutyl Ketone	120	39	"	"	"	"	"	"
Methyl-t-butyl ether	ND	39	"	"	"	"	"	"
Naphthalene	ND	78	"	"	"	"	"	"
Propylene	ND	39	"	"	"	"	"	"
Styrene	ND	39	"	"	"	"	"	m .
t-Amyl Methyl Ether	ND	39	"	"	"	"	"	m .
t-Butyl alcohol	ND	39	"	"	"	"	"	m .
1,1,2,2-Tetrachloroethane	ND	39	"	"	"	"	"	п
Tetrachloroethene (PCE)	ND	39	"	"	"	"	"	п
Tetrahydrofuran	ND	39	"	"	"	"	"	п
Toluene	1500	39	"	"	"	"	"	п
1,2,4-Trichlorobenzene	ND	39	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	39	"	"	"	"	"	п
1,1,2-Trichloroethane	ND	39	"	"	"	"	"	п
Trichloroethene (TCE)	ND	39	"	"	"	"	"	п
Trichlorofluoromethane	ND	39	"	"	"	"	"	m .
1,1,2-Trichlorotrifluoroethane	ND	39	"	"	"	"	"	п
1,2,4-Trimethylbenzene	46	39	"	"	"	"	"	m .
1,3,5-Trimethylbenzene	ND	39	"	"	"	"	"	"
Vinyl acetate	ND	39	"	"	"	"	"	п
Vinyl chloride	ND	39	"	"	"	"	"	п
Xylenes (total)	240	39	"	"	"	"	"	"
TPH Gasoline (C4-C12)	330000	160000	"	775	B5A0773	28-Jan-15	28-Jan-15	п

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB 720 West Arapaho Road Project Number: CARB #1344 Reported: Richardson TX, 75080 Project Manager: David Ranum 04-Feb-15 16:10

CAN006 1500318-06 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmental and Compliance

volatile	Organic	Compounds	s by	EPA	Method	10-15

Acetone	ND	130	ppbv	66	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod.
Benzene	75	33	"	"	"	"	"	"
Benzyl chloride	ND	33	"	"	"	"	"	"
Bromodichloromethane	ND	33	"	"	"	"	"	"
Bromoform	ND	33	"	"	"	"	"	"
Bromomethane	ND	33	"	"	"	"	"	"
1,3-Butadiene	ND	33	"	"	"	"	"	"
Carbon disulfide	ND	33	"	"	"	"	"	"
Carbon tetrachloride	ND	33	"	"	"	"	"	"
Chlorobenzene	ND	33	"	"	"	"	"	"
Chloroethane	ND	33	"	"	"	"	"	"
Chloroform	ND	33	"	"	"	"	"	"
Chloromethane	ND	33	"	"	"	"	"	"
Cyclohexane	630	33	"	"	"	"	"	"
Dibromochloromethane	ND	33	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	33	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	33	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	33	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	33	"	"	"	"	"	"
Dichlorodifluoromethane	ND	33	"	"	"	"	"	"
1,1-Dichloroethane	ND	33	"	"	"	"	"	"
1,2-Dichloroethane	ND	33	"	"	"	"	"	"
1,1-Dichloroethene	ND	33	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	33	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	33	"	"	"	"	"	"
1,2-Dichloropropane	ND	33	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	33	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	33	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	33	"	"	"	"	"	"
Diisopropyl Ether	ND	33	"	"	"	"	"	"
1,4-Dioxane	ND	33	"	"	"	"	"	"
Ethanol	ND	130	"	"	"	"	"	"
Ethyl Acetate	ND	33	"	"	"	"	"	"
Ethylbenzene	240	33	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	33	"	"	"	"	"	II .
4-Ethyltoluene	140	33	"	"	"	"	"	II .

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376 Page 67 of 223

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN006 1500318-06 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Volatile Organic	Compounds by	y EPA Method 10-15

Heptane	340	33	ppbv	66	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod.
Hexachlorobutadiene	ND	33	"	"	"	"	"	"
Hexane	630	33	"	"	"	"	"	"
2-Hexanone	ND	33	"	"	"	"	"	"
Isopropyl alcohol	ND	33	"	"	"	"	"	"
Methylene chloride	ND	33	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	33	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	33	"	"	"	"	"	"
Methyl-t-butyl ether	ND	33	"	"	"	"	"	"
Naphthalene	ND	66	"	"	"	"	"	"
Propylene	ND	33	"	"	"	"	"	"
Styrene	ND	33	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	33	"	"	"	"	"	"
t-Butyl alcohol	ND	33	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	33	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	33	"	"	"	"	"	"
Tetrahydrofuran	ND	33	"	"	"	"	"	"
Toluene	400	33	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	33	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	33	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	33	"	"	"	"	"	"
Trichloroethene (TCE)	ND	33	"	"	"	"	"	"
Trichlorofluoromethane	ND	33	"	"	"	"	"	"
1,1,2-Trichlorotrifluoroethane	ND	33	"	"	"	"	"	"
1,2,4-Trimethylbenzene	180	33	"	"	"	"	"	"
1,3,5-Trimethylbenzene	38	33	"	"	"	"	"	"
Vinyl acetate	ND	33	"	"	"	"	"	"
Vinyl chloride	ND	33	"	"	"	"	"	"
Xylenes (total)	630	33	"	"	"	"	"	"
TPH Gasoline (C4-C12)	67000	13000	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN007 1500318-07 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Acetone	ND	44	ppbv	21.83	B5A0773	28-Jan-15	29-Jan-15	TO-15 mod
Benzene	ND	11	"	"	"	"	"	"
Benzyl chloride	ND	11	"	"	"	"	"	"
Bromodichloromethane	ND	11	"	"	"	"	"	"
Bromoform	ND	11	"	"	"	"	"	"
Bromomethane	ND	11	"	"	"	"	"	"
1,3-Butadiene	ND	11	"	"	"	"	"	"
Carbon disulfide	ND	11	"	"	"	"	"	"
Carbon tetrachloride	ND	11	"	"	"	"	"	"
Chlorobenzene	ND	11	"	"	"	"	"	"
Chloroethane	ND	11	"	"	"	"	"	"
Chloroform	ND	11	"	"	"	"	"	"
Chloromethane	ND	11	"	"	"	"	"	"
Cyclohexane	ND	11	"	"	"	"	"	"
Dibromochloromethane	ND	11	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	11	"	"	"	"	"	"
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethane	ND	11	"	"	"	"	"	"
1,2-Dichloroethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethene	ND	11	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
1,2-Dichloropropane	ND	11	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	11	"	"	"	"	"	"
Diisopropyl Ether	ND	11	"	"	"	"	"	"
1,4-Dioxane	ND	11	"	"	"	"	"	"
Ethanol	ND	44	"	"	"	"	"	"
Ethyl Acetate	ND	11	"	"	"	"	"	"
Ethylbenzene	ND	11	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	11	"	"	"	"	"	"
4-Ethyltoluene	30	11	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN007 1500318-07 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmental and Compliance

Ieptane	ND	11	ppbv	21.83	B5A0773	28-Jan-15	29-Jan-15	TO-15 mod
Iexachlorobutadiene	ND	11	"	"	"	"	"	"
Iexane	ND	11	"	"	"	"	"	"
-Hexanone	ND	11	"	"	"	"	"	"
sopropyl alcohol	24	11	"	"	"	"	"	"
Methylene chloride	ND	11	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	11	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	11	"	"	"	"	"	"
Aethyl-t-butyl ether	ND	11	"	"	"	"	"	"
Vaphthalene	ND	22	"	"	"	"	"	"
ropylene	ND	11	"	"	"	"	"	"
tyrene	ND	11	"	"	"	"	"	"
-Amyl Methyl Ether	ND	11	"	"	"	"	"	"
-Butyl alcohol	ND	11	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"
etrachloroethene (PCE)	ND	11	"	"	"	"	"	"
etrahydrofuran	ND	11	"	"	"	"	"	"
Coluene	12	11	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	11	"	"	"	"	"	"
,1,1-Trichloroethane	ND	11	"	"	"	"	"	"
,1,2-Trichloroethane	ND	11	"	"	"	"	"	"
richloroethene (TCE)	ND	11	"	"	"	"	"	"
richlorofluoromethane	ND	11	"	"	"	"	"	"
,1,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"
,2,4-Trimethylbenzene	65	11	"	"	"	"	"	"
,3,5-Trimethylbenzene	12	11	"	"	"	"	"	"
inyl acetate	ND	11	"	"	"	"	"	"
/inyl chloride	ND	11	"	"	"	"	"	"
Kylenes (total)	36	11	"	"	"	"	"	"
PH Gasoline (C4-C12)	ND	4400	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB 720 West Arapaho Road Project Number: CARB #1344 Reported: Richardson TX, 75080 Project Manager: David Ranum 04-Feb-15 16:10

CAN008 1500318-08 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Ollfleid	Enviror	ımentai	and	Compliance	9

Volatile Organic Compounds by EPA N	Method TO-15								R-05
Acetone	ND	320	ppbv	161.3	B5B0018	02-Feb-15	03-Feb-15	TO-15 mod.	
Benzene	ND	81	"	"	"	"	"	"	
Benzyl chloride	ND	81	"	"	"	"	"	"	
Bromodichloromethane	ND	81	"	"	"	"	"	"	
Bromoform	ND	81	"	"	"	"	"	"	
Bromomethane	ND	81	"	"	"	"	"	"	
1,3-Butadiene	ND	81	"	"	"	"	"	"	
Carbon disulfide	ND	81	"	"	"	"	"	"	
Carbon tetrachloride	ND	81	"	"	"	"	"	"	
Chlorobenzene	ND	81	"	"	"	"	"	"	
Chloroethane	ND	81	"	"	"	"	"	"	
Chloroform	ND	81	"	"	"	"	"	"	
Chloromethane	ND	81	"	"	"	"	"	"	
Cyclohexane	ND	81	"	"	"	"	"	"	
Dibromochloromethane	ND	81	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	81	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	81	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	81	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	81	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	81	"	"	"	"	"	"	
1,1-Dichloroethane	ND	81	"	"	"	"	"	"	
1,2-Dichloroethane	ND	81	"	"	"	"	"	"	
1,1-Dichloroethene	ND	81	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	81	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	81	"	"	"	"	"	"	
1,2-Dichloropropane	ND	81	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	81	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	81	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	81	"	"	"	"	"	"	
Diisopropyl Ether	ND	81	"	"	"	"	"	"	
1,4-Dioxane	ND	81	"	"	"	"	"	"	
Ethanol	390	320	"	"	"	"	"	"	
Ethyl Acetate	ND	81	"	"	"	"	"	"	
Ethylbenzene	ND	81	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	81	"	"	"	"	"	"	
4-Ethyltoluene	ND	81	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN008 1500318-08 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA	Method TO-15								R-05
Heptane	ND	81	ppbv	161.3	B5B0018	02-Feb-15	03-Feb-15	TO-15 mod.	
Hexachlorobutadiene	ND	81	"	"	"	"	"	"	
Hexane	ND	81	"	"	"	"	"	"	
2-Hexanone	ND	81	"	"	"	"	"	"	
Isopropyl alcohol	ND	81	"	"	"	"	"	"	
Methylene chloride	ND	81	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	81	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	81	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	81	"	"	"	"	"	"	
Naphthalene	ND	160	"	"	"	"	"	"	
Propylene	ND	81	"	"	"	"	"	"	
Styrene	ND	81	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	81	"	"	"	"	"	"	
t-Butyl alcohol	ND	81	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	81	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	81	"	"	"	"	"	"	
Tetrahydrofuran	ND	81	"	"	"	"	"	"	
Toluene	84	81	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	81	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	81	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	81	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	81	"	"	"	"	"	"	
Trichlorofluoromethane	ND	81	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	81	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	81	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	81	"	"	"	"	"	"	
Vinyl acetate	ND	81	"	"	"	"	"	"	
Vinyl chloride	ND	81	"	"	"	"	"	"	
Xylenes (total)	ND	81	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	32000	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN009 1500318-09 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Τ., ρ	Units	Dilution	Batch	Prepared		Method	Notes
--	---------	--------	-------	-------	----------	-------	----------	--	--------	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Acetone	ND	130	ppbv	65.5	B5A0773	28-Jan-15	28-Jan-15	TO-15 mod
Benzene	56	33	"	"	"	"	"	"
Benzyl chloride	ND	33	"	"	"	"	"	"
Bromodichloromethane	ND	33	"	"	"	"	"	"
Bromoform	ND	33	"	"	"	"	"	"
Bromomethane	ND	33	"	"	"	"	"	"
1,3-Butadiene	ND	33	"	"	"	"	"	"
Carbon disulfide	ND	33	"	"	"	"	"	"
Carbon tetrachloride	ND	33	"	"	"	"	"	"
Chlorobenzene	750	33	"	"	"	"	"	"
Chloroethane	ND	33	"	"	"	"	"	"
Chloroform	ND	33	"	"	"	"	"	"
Chloromethane	ND	33	"	"	"	"	"	"
Cyclohexane	5000	160	"	327.5	"	"	29-Jan-15	"
Dibromochloromethane	ND	33	"	65.5	"	"	28-Jan-15	"
1,2-Dibromoethane (EDB)	ND	33	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	33	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	33	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	33	"	"	"	"	"	"
Dichlorodifluoromethane	ND	33	"	"	"	"	"	"
1,1-Dichloroethane	ND	33	"	"	"	"	"	"
1,2-Dichloroethane	ND	33	"	"	"	"	"	"
1,1-Dichloroethene	ND	33	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	33	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	33	"	"	"	"	"	"
1,2-Dichloropropane	ND	33	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	33	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	33	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	33	"	"	"	"	"	"
Diisopropyl Ether	ND	33	"	"	"	"	"	"
1,4-Dioxane	ND	33	"	"	"	"	"	"
Ethanol	ND	130	"	"	"	"	"	"
Ethyl Acetate	ND	33	"	"	"	"	"	"
Ethylbenzene	310	33	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	33	"	"	"	"	"	"
4-Ethyltoluene	240	33	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN009 1500318-09 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Τ., ρ	Units	Dilution	Batch	Prepared		Method	Notes
--	---------	--------	-------	-------	----------	-------	----------	--	--------	-------

Oilfield Environmental and Compliance

Heptane	1400	33	ppbv	65.5	B5A0773	28-Jan-15	28-Jan-15	TO-15 mod
- Hexachlorobutadiene	ND	33	"	"	"	"	"	"
Hexane	1700	160	"	327.5	"	"	29-Jan-15	"
-Hexanone	2300	33	"	65.5	"	"	28-Jan-15	"
sopropyl alcohol	ND	33	"	"	"	"	"	"
Methylene chloride	ND	33	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	33	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	33	"	"	"	"	"	"
Methyl-t-butyl ether	ND	33	"	"	"	"	"	"
Naphthalene	ND	66	"	"	"	"	"	"
Propylene	ND	33	"	"	"	"	"	"
tyrene	ND	33	"	"	"	"	"	"
Amyl Methyl Ether	ND	33	"	"	"	"	"	"
Butyl alcohol	ND	33	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	33	"	"	"	"	"	"
etrachloroethene (PCE)	ND	33	"	"	"	"	"	"
etrahydrofuran	ND	33	"	"	"	"	"	"
oluene	280	33	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	33	"	"	"	"	"	"
,1,1-Trichloroethane	ND	33	"	"	"	"	"	"
,1,2-Trichloroethane	ND	33	"	"	"	"	"	"
richloroethene (TCE)	ND	33	"	"	"	"	"	"
richlorofluoromethane	ND	33	"	"	"	"	"	"
,1,2-Trichlorotrifluoroethane	ND	33	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	33	"	"	"	"	"	"
,3,5-Trimethylbenzene	130	33	"	"	"	"	"	"
inyl acetate	ND	33	"	"	"	"	"	"
inyl chloride	ND	33	"	"	"	"	"	"
Kylenes (total)	1000	33	"	"	"	"	"	"
TPH Gasoline (C4-C12)	250000	66000	"	327.5	"	"	29-Jan-15	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN010 1500318-10 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmental and Compliance

Acetone	ND	44	ppbv	22.16	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod
Benzene	220	11	"	"	"	"	"	"
Benzyl chloride	ND	11	"	"	"	"	"	"
Bromodichloromethane	ND	11	"	"	"	"	"	"
Bromoform	ND	11	"	"	"	"	"	"
Bromomethane	ND	11	"	"	"	"	"	"
1,3-Butadiene	ND	11	"	"	"	"	"	"
Carbon disulfide	ND	11	"	"	"	"	"	"
Carbon tetrachloride	ND	11	"	"	"	"	"	"
Chlorobenzene	ND	11	"	"	"	"	"	"
Chloroethane	ND	11	"	"	"	"	"	"
Chloroform	ND	11	"	"	"	"	"	"
Chloromethane	ND	11	"	"	"	"	"	"
Cyclohexane	810	55	"	110.83	B5A0773	28-Jan-15	28-Jan-15	"
Dibromochloromethane	ND	11	"	22.16	B5A0713	27-Jan-15	27-Jan-15	"
1,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	11	"	"	"	"	"	"
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethane	ND	11	"	"	"	"	"	"
1,2-Dichloroethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethene	ND	11	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
1,2-Dichloropropane	ND	11	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	11	"	"	"	"	"	"
Diisopropyl Ether	ND	11	"	"	"	"	"	"
1,4-Dioxane	ND	11	"	"	"	"	"	"
Ethanol	ND	44	"	"	"	"	"	"
Ethyl Acetate	ND	11	"	"	"	"	"	"
Ethylbenzene	ND	11	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	11	"	"	"	"	"	"
4-Ethyltoluene	ND	11	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN010 1500318-10 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by I	EPA Method TO-15							
Heptane	440	11	ppbv	22.16	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod
Hexachlorobutadiene	ND	11	"	"	"	"	"	"
Hexane	1500	55	"	110.83	B5A0773	28-Jan-15	28-Jan-15	"
2-Hexanone	ND	11	"	22.16	B5A0713	27-Jan-15	27-Jan-15	"
Isopropyl alcohol	ND	11	"	"	"	"	"	"
Methylene chloride	ND	11	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	11	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	11	"	"	"	"	"	"
Methyl-t-butyl ether	ND	11	"	"	"	"	"	"
Naphthalene	ND	22	"	"	"	"	"	"
Propylene	ND	11	"	"	"	"	"	"
Styrene	ND	11	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	11	"	"	"	"	"	"
t-Butyl alcohol	ND	11	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	11	"	"	"	"	"	"
Tetrahydrofuran	ND	11	"	"	"	"	"	"
Toluene	18	11	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	11	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	11	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"
Trichloroethene (TCE)	ND	11	"	"	"	"	"	"
Trichlorofluoromethane	ND	11	"	"	"	"	"	"
1,1,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	11	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	11	"	"	"	"	"	"
Vinyl acetate	ND	11	"	"	"	"	"	"
Vinyl chloride	ND	11	"	"	"	"	"	"
Xylenes (total)	11	11	"	"	"	"	"	"

Oilfield Environmental and Compliance

TPH Gasoline (C4-C12)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

29000

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN011 1500318-11 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmental	and Compliance
------------------------	----------------

Acetone	ND	43	ppbv	21.67	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod
Benzene	74	11	"	"	"	"	"	"
Benzyl chloride	ND	11	"	"	"	"	"	"
Bromodichloromethane	ND	11	"	"	"	"	"	"
Bromoform	ND	11	"	"	"	"	"	"
Bromomethane	ND	11	"	"	"	"	"	"
,3-Butadiene	ND	11	"	"	"	"	"	"
Carbon disulfide	ND	11	"	"	"	"	"	"
Carbon tetrachloride	ND	11	"	"	"	"	"	"
Chlorobenzene	ND	11	"	"	"	"	"	"
Chloroethane	ND	11	"	"	"	"	"	"
Chloroform	ND	11	"	"	"	"	"	"
Chloromethane	ND	11	"	"	"	"	"	"
Cyclohexane	360	11	"	"	"	"	"	"
Dibromochloromethane	ND	11	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"
,2-Dichlorobenzene	ND	11	"	"	"	"	"	"
,3-Dichlorobenzene	ND	11	"	"	"	"	"	"
,4-Dichlorobenzene	ND	11	"	"	"	"	"	"
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"
,1-Dichloroethane	ND	11	"	"	"	"	"	"
,2-Dichloroethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethene	ND	11	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
,2-Dichloropropane	ND	11	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	11	"	"	"	"	"	"
Diisopropyl Ether	ND	11	"	"	"	"	"	"
1,4-Dioxane	ND	11	"	"	"	"	"	"
Ethanol	ND	43	"	"	"	"	"	"
Ethyl Acetate	ND	11	"	"	"	"	"	"
Ethylbenzene	ND	11	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	11	"	"	"	"	"	"
1-Ethyltoluene	ND	11	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN011 1500318-11 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA Method TO-15
--

Heptane	190	11	ppbv	21.67	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod.
Hexachlorobutadiene	ND	11	"	"	"	"	"	"
Hexane	450	11	"	"	"	"	"	"
2-Hexanone	ND	11	"	"	"	"	"	"
Isopropyl alcohol	ND	11	"	"	"	"	"	"
Methylene chloride	ND	11	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	11	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	11	"	"	"	"	"	"
Methyl-t-butyl ether	ND	11	"	"	"	"	"	"
Naphthalene	ND	22	"	"	"	"	"	"
Propylene	ND	11	"	"	"	"	"	"
Styrene	ND	11	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	11	"	"	"	"	"	"
t-Butyl alcohol	ND	11	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	11	"	"	"	"	"	"
Tetrahydrofuran	ND	11	"	"	"	"	"	"
Toluene	98	11	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	11	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	11	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"
Trichloroethene (TCE)	ND	11	"	"	"	"	"	"
Trichlorofluoromethane	ND	11	"	"	"	"	"	"
1,1,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	11	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	11	"	"	"	"	"	"
Vinyl acetate	ND	11	"	"	"	"	"	"
Vinyl chloride	ND	11	"	"	"	"	"	"
Xylenes (total)	ND	11	"	"	"	"	"	"
TPH Gasoline (C4-C12)	6900	4300	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN012 1500318-12 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Acetone	ND	43	ppbv	21.67	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod
Benzene	ND	11	"	"	"	"	"	"
Benzyl chloride	ND	11	"	"	"	"	"	"
Bromodichloromethane	ND	11	"	"	"	"	"	"
Bromoform	ND	11	"	"	"	"	"	"
Bromomethane	ND	11	"	"	"	"	"	"
1,3-Butadiene	ND	11	"	"	"	"	"	"
Carbon disulfide	ND	11	"	"	"	"	"	"
Carbon tetrachloride	ND	11	"	"	"	"	"	"
Chlorobenzene	ND	11	"	"	"	"	"	"
Chloroethane	ND	11	"	"	"	"	"	"
Chloroform	ND	11	"	"	"	"	"	"
Chloromethane	ND	11	"	"	"	"	"	"
Cyclohexane	39	11	"	"	"	"	"	"
Dibromochloromethane	ND	11	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	11	"	"	"	"	"	"
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethane	ND	11	"	"	"	"	"	"
1,2-Dichloroethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethene	ND	11	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
1,2-Dichloropropane	ND	11	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	11	"	"	"	"	"	"
Diisopropyl Ether	ND	11	"	"	"	"	"	"
1,4-Dioxane	ND	11	"	"	"	"	"	"
Ethanol	ND	43	"	"	"	"	"	"
Ethyl Acetate	ND	11	"	"	"	"	"	"
Ethylbenzene	ND	11	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	11	"	"	"	"	"	"
4-Ethyltoluene	ND	11	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum04-Feb-15 16:10

CAN012 1500318-12 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA Method TO-15
--

Heptane	17	11	ppbv	21.67	B5A0713	27-Jan-15	27-Jan-15	TO-15 mod.
Hexachlorobutadiene	ND	11	"	"	"	"	"	"
Hexane	25	11	"	"	"	"	"	"
2-Hexanone	ND	11	"	"	"	"	"	"
Isopropyl alcohol	ND	11	"	"	"	"	"	"
Methylene chloride	ND	11	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	11	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	11	"	"	"	"	"	"
Methyl-t-butyl ether	ND	11	"	"	"	"	"	"
Naphthalene	ND	22	"	"	"	"	"	"
Propylene	ND	11	"	"	"	"	"	"
Styrene	ND	11	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	11	"	"	"	"	"	"
t-Butyl alcohol	ND	11	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	11	"	"	"	"	"	"
Tetrahydrofuran	ND	11	"	"	"	"	"	"
Toluene	15	11	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	11	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	11	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"
Trichloroethene (TCE)	ND	11	"	"	"	"	"	"
Trichlorofluoromethane	ND	11	"	"	"	"	"	"
1,1,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	11	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	11	"	"	"	"	"	"
Vinyl acetate	ND	11	"	"	"	"	"	"
Vinyl chloride	ND	11	"	"	"	"	"	"
Xylenes (total)	ND	11	"	"	"	"	"	"
TPH Gasoline (C4-C12)	ND	4300	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN013 1500415-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		1 Timet				1	-		

Oilfield Environmental and Compliance

thyl Acetate	ND	8.4	ppbv	16.88	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod
thylbenzene	ND	8.4	"	"	"	"	"	"
thyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"
Ethyltoluene	ND	8.4	"	"	"	"	"	"
eptane	14	8.4	"	"	"	"	"	"
exachlorobutadiene	ND	8.4	"	"	"	"	"	"
exane	52	8.4	"	"	"	"	"	"
Hexanone	ND	8.4	"	"	"	"	"	"
opropyl alcohol	ND	8.4	"	"	"	"	"	"
lethylene chloride	ND	8.4	"	"	"	"	"	"
lethyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"
lethyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"
lethyl-t-butyl ether	ND	8.4	"	"	"	"	"	"
aphthalene	ND	17	"	"	"	"	"	"
opylene	ND	8.4	"	"	"	"	"	"
yrene	ND	8.4	"	"	"	"	"	"
Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"
Butyl alcohol	ND	8.4	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"
etrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"
etrahydrofuran	ND	8.4	"	"	"	"	"	"
oluene	ND	8.4	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"
1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"
1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"
richloroethene (TCE)	ND	8.4	"	"	"	"	"	"
richlorofluoromethane	ND	8.4	"	"	"	"	"	"
1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"
nyl acetate	ND	8.4	"	"	"	"	"	"
inyl chloride	ND	8.4	"	"	"	"	"	"
ylenes (total)	ND	8.4	"	"	"	"	"	"
PH Gasoline (C4-C12)	ND	3400	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB 720 West Arapaho Road Project Number: CARB #1344 Reported: Richardson TX, 75080 Project Manager: David Ranum 06-Feb-15 15:41

CAN014 1500415-02 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		1 Timet				1	-		

Oilfield Environmental and Compliance

Acetone	ND	34	ppbv	17.13	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod
Benzene	28	8.6	"	"	"	"	"	"
Benzyl chloride	ND	8.6	"	"	"	"	"	"
Bromodichloromethane	ND	8.6	"	"	"	"	"	"
Bromoform	ND	8.6	"	"	"	"	"	"
Bromomethane	ND	8.6	"	"	"	"	"	"
1,3-Butadiene	ND	8.6	"	"	"	"	"	"
Carbon disulfide	ND	8.6	"	"	"	"	"	"
Carbon tetrachloride	ND	8.6	"	"	"	"	"	"
Chlorobenzene	ND	8.6	"	"	"	"	"	"
Chloroethane	ND	8.6	"	"	"	"	"	"
Chloroform	ND	8.6	"	"	"	"	"	"
Chloromethane	ND	8.6	"	"	"	"	"	"
Cyclohexane	130	8.6	"	"	"	"	"	"
Dibromochloromethane	ND	8.6	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	8.6	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	8.6	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	8.6	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	8.6	"	"	"	"	"	"
Dichlorodifluoromethane	ND	8.6	"	"	"	"	"	"
1,1-Dichloroethane	ND	8.6	"	"	"	"	"	"
1,2-Dichloroethane	ND	8.6	"	"	"	"	"	"
1,1-Dichloroethene	ND	8.6	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	8.6	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	8.6	"	"	"	"	"	"
1,2-Dichloropropane	ND	8.6	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	8.6	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	8.6	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.6	"	"	"	"	"	"
Diisopropyl Ether	ND	8.6	"	"	"	"	"	"
1,4-Dioxane	ND	8.6	"	"	"	"	"	"
Ethanol	ND	34	"	"	"	"	"	"
Ethyl Acetate	ND	8.6	"	"	"	"	"	"
Ethylbenzene	ND	8.6	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	8.6	"	"	"	"	"	"
4-Ethyltoluene	ND	8.6	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772

FAX: (805) 925-3376

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 82 of 223

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN014 1500415-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Jeptane	32	8.6	ppbv	17.13	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod
Hexachlorobutadiene	ND	8.6	"	"	"	"	"	"
Iexane	380	8.6	"	"	"	"	"	"
-Hexanone	ND	8.6	"	"	"	"	"	"
sopropyl alcohol	ND	8.6	"	"	"	"	"	"
Methylene chloride	ND	8.6	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	8.6	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	8.6	"	"	"	"	"	"
Aethyl-t-butyl ether	ND	8.6	"	"	"	"	"	"
Vaphthalene	ND	17	"	"	"	"	"	"
ropylene	ND	8.6	"	"	"	"	"	"
tyrene	ND	8.6	"	"	"	"	"	"
Amyl Methyl Ether	ND	8.6	"	"	"	"	"	"
Butyl alcohol	ND	8.6	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	8.6	"	"	"	"	"	"
etrachloroethene (PCE)	ND	8.6	"	"	"	"	"	"
etrahydrofuran	ND	8.6	"	"	"	"	"	"
oluene	10	8.6	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	8.6	"	"	"	"	"	"
,1,1-Trichloroethane	ND	8.6	"	"	"	"	"	"
,1,2-Trichloroethane	ND	8.6	"	"	"	"	"	"
richloroethene (TCE)	ND	8.6	"	"	"	"	"	"
richlorofluoromethane	ND	8.6	"	"	"	"	"	"
,1,2-Trichlorotrifluoroethane	ND	8.6	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	8.6	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	8.6	"	"	"	"	"	"
inyl acetate	ND	8.6	"	"	"	"	"	"
inyl chloride	ND	8.6	"	"	"	"	"	"
Kylenes (total)	ND	8.6	"	"	"	"	"	"
TPH Gasoline (C4-C12)	4500	3400	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Volatile Organic Compounds by EPA Method TO-15

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN015 1500415-03 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmental and Compliance

Acetone	ND	230	ppbv	116.67	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod.
Benzene	260	58	"	"	"	"	"	"
Benzyl chloride	ND	58	"	"	"	"	"	"
Bromodichloromethane	ND	58	"	"	"	"	"	"

Delizyi cilioride	ND	50							
Bromodichloromethane	ND	58	"	"	"	"	"	"	
Bromoform	ND	58	"	"	"	"	"	"	
Bromomethane	ND	58	"	"	"	"	"	"	
1,3-Butadiene	ND	58	"	"	"	"	"	"	
Carbon disulfide	ND	58	"	"	"	"	"	"	
Carbon tetrachloride	ND	58	"	"	"	"	"	"	
Chlorobenzene	ND	58	"	"	"	"	"	"	
Chloroethane	ND	58	"	"	"	"	"	"	
Chloroform	ND	58	"	"	"	"	"	"	
Chloromethane	ND	58	"	"	"	"	"	"	
Cyclohexane	1900	58	"	"	"	"	"	"	
Dibromochloromethane	ND	58	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	58	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	58	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	58	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	58	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	58	"	"	"	"	"	"	
1,1-Dichloroethane	ND	58	"	"	"	"	"	"	
1,2-Dichloroethane	ND	58	"	"	"	"	"	"	
1,1-Dichloroethene	ND	58	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	58	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	58	"	"	"	"	"	"	
1,2-Dichloropropane	ND	58	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	58	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	58	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	58	"	"	"	"	"	"	
Diisopropyl Ether	ND	58	"	"	"	"	"	"	
1,4-Dioxane	ND	58	"	"	"	"	"	"	
Ethanol	1200	230	"	"	"	"	"	"	
Ethyl Acetate	ND	58	"	"	"	"	"	"	
Ethylbenzene	ND	58	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	58	"	"	"	"	"	"	
4-Ethyltoluene	ND	58	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Volatile Organic Compounds by EPA Method TO-15

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN015 1500415-03 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmental and Compliance

Heptane	720	58	ppbv	116.67	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod.	
Hexachlorobutadiene	ND	58	"	"	"	"	"	"	
Hexane	13000	180	"	350	"	"	03-Feb-15	"	
2-Hexanone	ND	58	"	116.67	"	"	02-Feb-15	"	
Isopropyl alcohol	91	58	"	"	"	"	"	"	
Methylene chloride	ND	58	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	58	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	58	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	58	"	"	"	"	"	"	
Naphthalene	ND	120	"	"	"	"	"	"	
Propylene	ND	58	"	"	"	"	"	"	
Styrene	ND	58	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	58	"	"	"	"	"	"	
t-Butyl alcohol	ND	58	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	58	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	58	"	"	"	"	"	"	
Tetrahydrofuran	ND	58	"	"	"	"	"	"	
Toluene	190	58	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	58	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	58	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	58	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	58	"	"	"	"	"	"	
Trichlorofluoromethane	ND	58	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	58	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	58	"	"	"	"	"	"	

58

58

58

58

23000

ND

ND

ND

ND

99000

Oilfield Environmental and Compliance

1,3,5-Trimethylbenzene

TPH Gasoline (C4-C12)

Vinyl acetate

Vinyl chloride

Xylenes (total)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN016 1500415-04 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
---------	--------	-----------	-------	----------	-------	----------	----------	--------	-------

Oilfield Environmental and Compliance

Acetone	ND	34	ppbv	17	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod
Benzene	43	8.5	"	"	"	"	"	"
Benzyl chloride	ND	8.5	"	"	"	"	"	"
Bromodichloromethane	ND	8.5	"	"	"	"	"	"
Bromoform	ND	8.5	"	"	"	"	"	"
Bromomethane	ND	8.5	"	"	"	"	"	"
,3-Butadiene	ND	8.5	"	"	"	"	"	"
Carbon disulfide	ND	8.5	"	"	"	"	"	"
Carbon tetrachloride	ND	8.5	"	"	"	"	"	"
Chlorobenzene	ND	8.5	"	"	"	"	"	"
Chloroethane	ND	8.5	"	"	"	"	"	"
Chloroform	ND	8.5	"	"	"	"	"	"
Chloromethane	ND	8.5	"	"	"	"	"	"
Cyclohexane	100	8.5	"	"	"	"	"	"
Dibromochloromethane	ND	8.5	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	8.5	"	"	"	"	"	"
,2-Dichlorobenzene	ND	8.5	"	"	"	"	"	"
,3-Dichlorobenzene	ND	8.5	"	"	"	"	"	"
,4-Dichlorobenzene	ND	8.5	"	"	"	"	"	"
Dichlorodifluoromethane	ND	8.5	"	"	"	"	"	"
1,1-Dichloroethane	ND	8.5	"	"	"	"	"	"
1,2-Dichloroethane	ND	8.5	"	"	"	"	"	"
1,1-Dichloroethene	ND	8.5	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	8.5	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	8.5	"	"	"	"	"	"
,2-Dichloropropane	ND	8.5	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	8.5	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	8.5	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.5	"	"	"	"	"	"
Diisopropyl Ether	ND	8.5	"	"	"	"	"	"
1,4-Dioxane	ND	8.5	"	"	"	"	"	"
Ethanol	ND	34	"	"	"	"	"	"
Ethyl Acetate	ND	8.5	"	"	"	"	"	"
Ethylbenzene	ND	8.5	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	8.5	"	"	"	"	"	"
1-Ethyltoluene	ND	8.5	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Volatile Organic Compounds by EPA Method TO-15

Sage Environmental Consulting Project: CARB 720 West Arapaho Road Project Number: CARB #1344 Reported: Richardson TX, 75080 Project Manager: David Ranum 06-Feb-15 15:41

CAN016 1500415-04 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Heptane	33	8.5	ppbv	17	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod
Hexachlorobutadiene	ND	8.5	"	"	"	"	"	"
Hexane	350	8.5	"	"	"	"	"	"
2-Hexanone	ND	8.5	"	"	"	"	"	"
Isopropyl alcohol	ND	8.5	"	"	"	"	"	"
Methylene chloride	ND	8.5	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	8.5	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	8.5	"	"	"	"	"	"
Methyl-t-butyl ether	ND	8.5	"	"	"	"	"	"
Naphthalene	ND	17	"	"	"	"	"	"
Propylene	ND	8.5	"	"	"	"	"	"
Styrene	ND	8.5	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	8.5	"	"	"	"	"	"
t-Butyl alcohol	ND	8.5	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	8.5	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	8.5	"	"	"	"	"	"
Tetrahydrofuran	ND	8.5	"	"	"	"	"	"
Toluene	12	8.5	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	8.5	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	8.5	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	8.5	"	"	"	"	"	"
Trichloroethene (TCE)	ND	8.5	"	"	"	"	"	"
Trichlorofluoromethane	ND	8.5	"	"	"	"	"	"
1,1,2-Trichlorotrifluoroethane	ND	8.5	"	"	"	"	"	"

8.5

8.5

8.5

8.5

8.5

3400

ND

ND

ND

ND

ND

16000

Oilfield Environmental and Compliance

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

TPH Gasoline (C4-C12)

Vinyl acetate

Vinyl chloride

Xylenes (total)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN017 1500415-05 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Limit				-	•		

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA	Method TO-15								R-05
Acetone	ND	67	ppbv	33.5	B5B0018	02-Feb-15	03-Feb-15	TO-15 mod.	
Benzene	ND	17	"	"	"	"	"	"	
Benzyl chloride	ND	17	"	"	"	"	"	"	
Bromodichloromethane	ND	17	"	"	"	"	"	"	
Bromoform	ND	17	"	"	"	"	"	"	
Bromomethane	ND	17	"	"	"	"	"	"	
1,3-Butadiene	ND	17	"	"	"	"	"	"	
Carbon disulfide	ND	17	"	"	"	"	"	"	
Carbon tetrachloride	ND	17	"	"	"	"	"	"	
Chlorobenzene	ND	17	"	"	"	"	"	"	
Chloroethane	ND	17	"	"	"	"	"	"	
Chloroform	ND	17	"	"	"	"	"	"	
Chloromethane	ND	17	"	"	"	"	"	"	
Cyclohexane	ND	17	"	"	"	"	"	"	
Dibromochloromethane	ND	17	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	17	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	17	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	17	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	17	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	17	"	"	"	"	"	"	
1,1-Dichloroethane	ND	17	"	"	"	"	"	"	
1,2-Dichloroethane	ND	17	"	"	"	"	"	"	
1,1-Dichloroethene	ND	17	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	17	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	17	"	"	"	"	"	"	
1,2-Dichloropropane	ND	17	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	17	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	17	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	17	"	"	"	"	"	"	
Diisopropyl Ether	ND	17	"	"	"	"	"	"	
1,4-Dioxane	ND	17	"	"	"	"	"	"	
Ethanol	ND	67	"	"	"	"	"	"	
Ethyl Acetate	ND	17	"	"	"	"	"	"	
Ethylbenzene	ND	17	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	17	"	"	"	"	"	"	
4-Ethyltoluene	ND	17	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN017 1500415-05 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA Meth	od TO-15								R-05
Heptane	ND	17	ppbv	33.5	B5B0018	02-Feb-15	03-Feb-15	TO-15 mod.	
Hexachlorobutadiene	ND	17	"	"	"	"	"	"	
Hexane	ND	17	"	"	"	"	"	"	
2-Hexanone	ND	17	"	"	"	"	"	"	
Isopropyl alcohol	ND	17	"	"	"	"	"	"	
Methylene chloride	ND	17	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	17	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	17	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	17	"	"	"	"	"	"	
Naphthalene	ND	34	"	"	"	"	"	"	
Propylene	ND	17	"	"	"	"	"	"	
Styrene	ND	17	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	17	"	"	"	"	"	"	
t-Butyl alcohol	ND	17	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	17	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	17	"	"	"	"	"	"	
Tetrahydrofuran	ND	17	"	"	"	"	"	"	
Toluene	ND	17	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	17	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	17	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	17	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	17	"	"	"	"	"	"	
Trichlorofluoromethane	ND	17	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	17	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	17	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	17	"	"	"	"	"	"	
Vinyl acetate	ND	17	"	"	"	"	"	"	
Vinyl chloride	ND	17	"	"	"	"	"	"	
Xylenes (total)	ND	17	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	6700	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN018 1500415-06 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmental and Compliance

Acetone	ND	140	ppbv	69	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod.
Benzene	490	35	"	"	"	"	"	"
Benzyl chloride	ND	35	"	"	"	"	"	"
Bromodichloromethane	ND	35	"	"	"	"	"	"
Bromoform	ND	35	"	"	"	"	"	"
Bromomethane	ND	35	"	"	"	"	"	"
1,3-Butadiene	ND	35	"	"	"	"	"	"
Carbon disulfide	ND	35	"	"	"	"	"	"
Carbon tetrachloride	ND	35	"	"	"	"	"	"
Chlorobenzene	ND	35	"	"	"	"	"	"
Chloroethane	ND	35	"	"	"	"	"	"
Chloroform	ND	35	"	"	"	"	"	"
Chloromethane	ND	35	"	"	"	"	"	"
Cyclohexane	3400	86	"	172.5	"	"	03-Feb-15	"
Dibromochloromethane	ND	35	"	69	"	"	02-Feb-15	"
1,2-Dibromoethane (EDB)	ND	35	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	35	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	35	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	35	"	"	"	"	"	"
Dichlorodifluoromethane	ND	35	"	"	"	"	"	"
1,1-Dichloroethane	ND	35	"	"	"	"	"	"
1,2-Dichloroethane	ND	35	"	"	"	"	"	"
1,1-Dichloroethene	ND	35	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	35	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	35	"	"	"	"	"	"
1,2-Dichloropropane	ND	35	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	35	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	35	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	35	"	"	"	"	"	"
Diisopropyl Ether	ND	35	"	"	"	"	"	"
1,4-Dioxane	ND	35	"	"	"	"	"	"
Ethanol	ND	140	"	"	"	"	"	"
Ethyl Acetate	ND	35	"	"	"	"	"	"
Ethylbenzene	52	35	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	35	"	"	"	"	"	"
4-Ethyltoluene	ND	35	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB 720 West Arapaho Road Project Number: CARB #1344 Reported: Richardson TX, 75080 Project Manager: David Ranum 06-Feb-15 15:41

CAN018 1500415-06 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		1 Timet				1	-		

Oilfield Environmental and Compliance

Heptane	2400	86	ppbv	172.5	B5B0018	02-Feb-15	03-Feb-15	TO-15 mod.
Hexachlorobutadiene	ND	35	"	69	"	"	02-Feb-15	"
Hexane	5500	86	"	172.5	"	"	03-Feb-15	"
2-Hexanone	ND	35	"	69	"	"	02-Feb-15	"
Isopropyl alcohol	ND	35	"	"	"	"	"	"
Methylene chloride	ND	35	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	35	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	35	"	"	"	"	"	"
Methyl-t-butyl ether	ND	35	"	"	"	"	"	"
Naphthalene	ND	69	"	"	"	"	"	"
Propylene	ND	35	"	"	"	"	"	"
Styrene	ND	35	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	35	"	"	"	"	"	"
t-Butyl alcohol	ND	35	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	35	"	"	"	"	"	II .
Tetrachloroethene (PCE)	ND	35	"	"	"	"	"	II .
Tetrahydrofuran	ND	35	"	"	"	"	"	II .
Toluene	850	35	"	"	"	"	"	II .
1,2,4-Trichlorobenzene	ND	35	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	35	"	"	"	"	"	m .
1,1,2-Trichloroethane	ND	35	"	"	"	"	"	II .
Trichloroethene (TCE)	ND	35	"	"	"	"	"	"
Trichlorofluoromethane	ND	35	"	"	"	"	"	"
1,1,2-Trichlorotrifluoroethane	ND	35	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	35	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	35	"	"	"	"	"	"
Vinyl acetate	ND	35	"	"	"	"	"	"
Vinyl chloride	ND	35	"	"	"	"	"	"
Xylenes (total)	150	35	"	"	"	"	"	"
TPH Gasoline (C4-C12)	77000	14000	"	"	"	"	"	m .

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN019 1500415-07 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-		Limit					•		

Oilfield Environmental	and (Compliance
------------------------	-------	------------

Volatile Organic Compounds by EPA I	Method TO-15								R-05
Acetone	ND	44	ppbv	21.83	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod.	
Benzene	ND	11	"	"	"	"	"	"	
Benzyl chloride	ND	11	"	"	"	"	"	"	
Bromodichloromethane	ND	11	"	"	"	"	"	"	
Bromoform	ND	11	"	"	"	"	"	"	
Bromomethane	ND	11	"	"	"	"	"	"	
1,3-Butadiene	ND	11	"	"	"	"	"	"	
Carbon disulfide	ND	11	"	"	"	"	"	"	
Carbon tetrachloride	ND	11	"	"	"	"	"	"	
Chlorobenzene	ND	11	"	"	"	"	"	"	
Chloroethane	ND	11	"	"	"	"	"	"	
Chloroform	ND	11	"	"	"	"	"	"	
Chloromethane	ND	11	"	"	"	"	"	"	
Cyclohexane	ND	11	"	"	"	"	"	"	
Dibromochloromethane	ND	11	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	11	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	11	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	11	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"	
1,1-Dichloroethane	ND	11	"	"	"	"	"	"	
1,2-Dichloroethane	ND	11	"	"	"	"	"	"	
1,1-Dichloroethene	ND	11	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"	
1,2-Dichloropropane	ND	11	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	11	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	11	"	"	"	"	"	"	
Diisopropyl Ether	ND	11	"	"	"	"	"	"	
1,4-Dioxane	ND	11	"	"	"	"	"	"	
Ethanol	ND	44	"	"	"	"	"	"	
Ethyl Acetate	ND	11	"	"	"	"	"	"	
Ethylbenzene	ND	11	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	11	"	"	"	"	"	"	
4-Ethyltoluene	ND	11	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN019 1500415-07 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
---------	--------	-----------	-------	----------	-------	----------	----------	--------	-------

Oilfield Envi	ronmental	and	Compl	liance
---------------	-----------	-----	-------	--------

Volatile Organic Compounds by EPA Meth	nod TO-15								R-05
Heptane	ND	11	ppbv	21.83	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod.	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Hexane	ND	11	"	"	"	"	"	"	
2-Hexanone	ND	11	"	"	"	"	"	"	
Isopropyl alcohol	ND	11	"	"	"	"	"	"	
Methylene chloride	ND	11	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	11	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	11	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	11	"	"	"	"	"	"	
Naphthalene	ND	22	"	"	"	"	"	"	
Propylene	ND	11	"	"	"	"	"	"	
Styrene	ND	11	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	11	"	"	"	"	"	"	
t-Butyl alcohol	ND	11	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	11	"	"	"	"	"	"	
Tetrahydrofuran	ND	11	"	"	"	"	"	"	
Toluene	ND	11	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	11	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	11	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	11	"	"	"	"	"	"	
Trichlorofluoromethane	ND	11	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	11	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	11	"	"	"	"	"	"	
Vinyl acetate	ND	11	"	"	"	"	"	"	
Vinyl chloride	ND	11	"	"	"	"	"	"	
Xylenes (total)	ND	11	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	4400	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN020 1500415-08 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Olifiela	Environ	mentai	and	Comb	onance

Volatile Organic Compounds by EPA	Method TO-15								R-05
Acetone	ND	66	ppbv	32.75	B5B0018	02-Feb-15	03-Feb-15	TO-15 mod.	
Benzene	20	16	"	"	"	"	"	"	
Benzyl chloride	ND	16	"	"	"	"	"	"	
Bromodichloromethane	ND	16	"	"	"	"	"	"	
Bromoform	ND	16	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
1,3-Butadiene	ND	16	"	"	"	"	"	"	
Carbon disulfide	ND	16	"	"	"	"	"	"	
Carbon tetrachloride	ND	16	"	"	"	"	"	"	
Chlorobenzene	ND	16	"	"	"	"	"	"	
Chloroethane	ND	16	"	"	"	"	"	"	
Chloroform	ND	16	"	"	"	"	"	"	
Chloromethane	ND	16	"	"	"	"	"	"	
Cyclohexane	94	16	"	"	"	"	"	"	
Dibromochloromethane	ND	16	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	16	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	16	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	16	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	16	"	"	"	"	"	"	
1,1-Dichloroethane	ND	16	"	"	"	"	"	"	
1,2-Dichloroethane	ND	16	"	"	"	"	"	"	
1,1-Dichloroethene	ND	16	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	16	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	16	"	"	"	"	"	"	
1,2-Dichloropropane	ND	16	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	16	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	16	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	16	"	"	"	"	"	"	
Diisopropyl Ether	ND	16	"	"	"	"	"	"	
1,4-Dioxane	ND	16	"	"	"	"	"	"	
Ethanol	ND	66	"	"	"	"	"	"	
Ethyl Acetate	ND	16	"	"	"	"	"	"	
Ethylbenzene	ND	16	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	16	"	"	"	"	"	"	
4-Ethyltoluene	ND	16	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN020 1500415-08 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA M	1ethod TO-15								R-05
Heptane	21	16	ppbv	32.75	B5B0018	02-Feb-15	03-Feb-15	TO-15 mod.	
Hexachlorobutadiene	ND	16	"	"	"	"	"	"	
Hexane	250	16	"	"	"	"	"	"	
2-Hexanone	ND	16	"	"	"	"	"	"	
Isopropyl alcohol	ND	16	"	"	"	"	"	"	
Methylene chloride	ND	16	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	16	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	16	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	16	"	"	"	"	"	"	
Naphthalene	ND	33	"	"	"	"	"	"	
Propylene	ND	16	"	"	"	"	"	"	
Styrene	ND	16	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	16	"	"	"	"	"	"	
t-Butyl alcohol	ND	16	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	16	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	16	"	"	"	"	"	"	
Tetrahydrofuran	ND	16	"	"	"	"	"	"	
Toluene	ND	16	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	16	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	16	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	16	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	16	"	"	"	"	"	"	
Trichlorofluoromethane	ND	16	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	16	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	16	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	16	"	"	"	"	"	"	
Vinyl acetate	ND	16	"	"	"	"	"	"	
Vinyl chloride	ND	16	"	"	"	"	"	"	
Xylenes (total)	ND	16	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	6600	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB Project Number: CARB #1344 720 West Arapaho Road Reported: Richardson TX, 75080 Project Manager: David Ranum 06-Feb-15 15:41

CAN021 1500415-09 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-		Limit					•		

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA	Method TO-15								R-05
Acetone	ND	67	ppbv	33.5	B5B0018	02-Feb-15	03-Feb-15	TO-15 mod.	
Benzene	ND	17	"	"	"	"	"	"	
Benzyl chloride	ND	17	"	"	"	"	"	"	
Bromodichloromethane	ND	17	"	"	"	"	"	"	
Bromoform	ND	17	"	"	"	"	"	"	
Bromomethane	ND	17	"	"	"	"	"	"	
1,3-Butadiene	ND	17	"	"	"	"	"	"	
Carbon disulfide	ND	17	"	"	"	"	"	"	
Carbon tetrachloride	ND	17	"	"	"	"	"	"	
Chlorobenzene	ND	17	"	"	"	"	"	"	
Chloroethane	ND	17	"	"	"	"	"	"	
Chloroform	ND	17	"	"	"	"	"	"	
Chloromethane	ND	17	"	"	"	"	"	"	
Cyclohexane	36	17	"	"	"	"	"	"	
Dibromochloromethane	ND	17	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	17	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	17	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	17	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	17	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	17	"	"	"	"	"	"	
1,1-Dichloroethane	ND	17	"	"	"	"	"	"	
1,2-Dichloroethane	ND	17	"	"	"	"	"	"	
1,1-Dichloroethene	ND	17	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	17	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	17	"	"	"	"	"	"	
1,2-Dichloropropane	ND	17	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	17	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	17	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	17	"	"	"	"	"	"	
Diisopropyl Ether	ND	17	"	"	"	"	"	"	
1,4-Dioxane	ND	17	"	"	"	"	"	"	
Ethanol	140	67	"	"	"	"	"	"	
Ethyl Acetate	ND	17	"	"	"	"	"	"	
Ethylbenzene	ND	17	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	17	"	"	"	"	"	"	
4-Ethyltoluene	ND	17	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN021 1500415-09 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-		Limit					•		

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EP	A Method 10-15								R-05
Heptane	ND	17	ppbv	33.5	B5B0018	02-Feb-15	03-Feb-15	TO-15 mod.	
Hexachlorobutadiene	ND	17	"	"	"	"	"	"	
Hexane	77	17	"	"	"	"	"	"	
2-Hexanone	ND	17	"	"	"	"	"	"	
Isopropyl alcohol	ND	17	"	"	"	"	"	"	
Methylene chloride	ND	17	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	17	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	17	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	17	"	"	"	"	"	"	
Naphthalene	ND	34	"	"	"	"	"	"	
Propylene	ND	17	"	"	"	"	"	"	
Styrene	ND	17	"	"	"	"	"	"	
-Amyl Methyl Ether	ND	17	"	"	"	"	"	"	
-Butyl alcohol	ND	17	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	17	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	17	"	"	"	"	"	"	
Tetrahydrofuran	ND	17	"	"	"	"	"	"	
Toluene	ND	17	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	17	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	17	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	17	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	17	"	"	"	"	"	"	
Trichlorofluoromethane	ND	17	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	17	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	17	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	17	"	"	"	"	"	"	
Vinyl acetate	ND	17	"	"	"	"	"	"	
Vinyl chloride	ND	17	"	"	"	"	"	"	
Xylenes (total)	ND	17	"	"	"	"	"	"	
ΓPH Gasoline (C4-C12)	ND	6700	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN022 1500415-10 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Acetone	ND	44	ppbv	22	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod
Benzene	ND	11	"	"	"	"	"	"
Benzyl chloride	ND	11	"	"	"	"	"	"
Bromodichloromethane	ND	11	"	"	"	"	"	"
Bromoform	ND	11	"	"	"	"	"	"
Bromomethane	ND	11	"	"	"	"	"	"
1,3-Butadiene	ND	11	"	"	"	"	"	"
Carbon disulfide	ND	11	"	"	"	"	"	"
Carbon tetrachloride	ND	11	"	"	"	"	"	"
Chlorobenzene	ND	11	"	"	"	"	"	"
Chloroethane	ND	11	"	"	"	"	"	"
Chloroform	ND	11	"	"	"	"	"	"
Chloromethane	ND	11	"	"	"	"	"	"
Cyclohexane	ND	11	"	"	"	"	"	"
Dibromochloromethane	ND	11	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	11	"	"	"	"	"	"
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethane	ND	11	"	"	"	"	"	"
1,2-Dichloroethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethene	ND	11	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
1,2-Dichloropropane	ND	11	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	11	"	"	"	"	"	"
Diisopropyl Ether	ND	11	"	"	"	"	"	"
1,4-Dioxane	ND	11	"	"	"	"	"	"
Ethanol	ND	44	"	"	"	"	"	"
Ethyl Acetate	ND	11	"	"	"	"	"	"
Ethylbenzene	ND	11	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	11	"	"	"	"	"	"
4-Ethyltoluene	ND	11	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB Project Number: CARB #1344 720 West Arapaho Road Reported: Richardson TX, 75080 Project Manager: David Ranum 06-Feb-15 15:41

CAN022 1500415-10 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Heptane	ND	11	ppbv	22	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod
Hexachlorobutadiene	ND	11	"	"	"	"	"	"
Hexane	14	11	"	"	"	"	"	"
2-Hexanone	ND	11	"	"	"	"	"	"
sopropyl alcohol	ND	11	"	"	"	"	"	"
Methylene chloride	ND	11	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	11	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	11	"	"	"	"	"	"
Methyl-t-butyl ether	ND	11	"	"	"	"	"	"
Naphthalene	ND	22	"	"	"	"	"	"
Propylene	ND	11	"	"	"	"	"	"
Styrene	ND	11	"	"	"	"	"	"
-Amyl Methyl Ether	ND	11	"	"	"	"	"	"
-Butyl alcohol	ND	11	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	11	"	"	"	"	"	"
Tetrahydrofuran	ND	11	"	"	"	"	"	"
Toluene	ND	11	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	11	"	"	"	"	"	"
,1,1-Trichloroethane	ND	11	"	"	"	"	"	"
,1,2-Trichloroethane	ND	11	"	"	"	"	"	"
Trichloroethene (TCE)	ND	11	"	"	"	"	"	"
Trichlorofluoromethane	ND	11	"	"	"	"	"	"
,1,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	11	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	11	"	"	"	"	"	"
7inyl acetate	ND	11	"	"	"	"	"	"
inyl chloride	ND	11	"	"	"	"	"	"
Xylenes (total)	ND	11	"	"	"	"	"	"
TPH Gasoline (C4-C12)	12000	4400	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

TEL: (805) 922-4772 www.oecusa.com FAX: (805) 925-3376

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN023 1500415-11 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmental	and Compliance
------------------------	----------------

Acetone	ND	45	ppbv	22.5	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod
Benzene	16	11	"	"	"	"	"	"
Benzyl chloride	ND	11	"	"	"	"	"	"
Bromodichloromethane	ND	11	"	"	"	"	"	"
Bromoform	ND	11	"	"	"	"	"	"
Bromomethane	ND	11	"	"	"	"	"	"
1,3-Butadiene	ND	11	"	"	"	"	"	"
Carbon disulfide	ND	11	"	"	"	"	"	"
Carbon tetrachloride	ND	11	"	"	"	"	"	"
Chlorobenzene	ND	11	"	"	"	"	"	"
Chloroethane	ND	11	"	"	"	"	"	"
Chloroform	ND	11	"	"	"	"	"	"
Chloromethane	ND	11	"	"	"	"	"	"
Cyclohexane	80	11	"	"	"	"	"	"
Dibromochloromethane	ND	11	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	11	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	11	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	11	"	"	"	"	"	"
Dichlorodifluoromethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethane	ND	11	"	"	"	"	"	"
1,2-Dichloroethane	ND	11	"	"	"	"	"	"
1,1-Dichloroethene	ND	11	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	11	"	"	"	"	"	"
1,2-Dichloropropane	ND	11	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	11	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	11	"	"	"	"	"	"
Diisopropyl Ether	ND	11	"	"	"	"	"	"
1,4-Dioxane	ND	11	"	"	"	"	"	"
Ethanol	ND	45	"	"	"	"	"	"
Ethyl Acetate	ND	11	"	"	"	"	"	"
Ethylbenzene	ND	11	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	11	"	"	"	"	"	"
4-Ethyltoluene	ND	11	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum06-Feb-15 15:41

CAN023 1500415-11 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes
--

Oilfield Environmental and Compliance

Heptane	26	11	ppbv	22.5	B5B0018	02-Feb-15	02-Feb-15	TO-15 mod
Hexachlorobutadiene	ND	11	"	"	"	"	"	"
Hexane	170	11	"	"	"	"	"	"
2-Hexanone	ND	11	"	"	"	"	"	"
Isopropyl alcohol	ND	11	"	"	"	"	"	"
Methylene chloride	ND	11	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	11	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	11	"	"	"	"	"	"
Methyl-t-butyl ether	ND	11	"	"	"	"	"	"
Naphthalene	ND	23	"	"	"	"	"	"
Propylene	ND	11	"	"	"	"	"	"
Styrene	ND	11	"	"	"	"	"	"
-Amyl Methyl Ether	ND	11	"	"	"	"	"	"
-Butyl alcohol	ND	11	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	11	"	"	"	"	"	"
etrachloroethene (PCE)	ND	11	"	"	"	"	"	"
etrahydrofuran	ND	11	"	"	"	"	"	"
oluene	12	11	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	11	"	"	"	"	"	"
,1,1-Trichloroethane	ND	11	"	"	"	"	"	"
,1,2-Trichloroethane	ND	11	"	"	"	"	"	"
richloroethene (TCE)	ND	11	"	"	"	"	"	"
Trichlorofluoromethane	ND	11	"	"	"	"	"	"
,1,2-Trichlorotrifluoroethane	ND	11	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	11	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	11	"	"	"	"	"	"
inyl acetate	ND	11	"	"	"	"	"	"
/inyl chloride	ND	11	"	"	"	"	"	"
Kylenes (total)	ND	11	"	"	"	"	"	"
TPH Gasoline (C4-C12)	ND	4500	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 14:34

TB024B 1500806-02 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Limit				•	-		

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15							R-02, TS-3
Acetone	ND	37	ppbv	18.7	B5C0189	06-Mar-15	07-Mar-15	TO-15 mod.
Benzene	ND	9.4	"	"	"	"	"	"
Benzyl chloride	ND	9.4	"	"	"	"	"	"
Bromodichloromethane	ND	9.4	"	"	"	"	"	"
Bromoform	ND	9.4	"	"	"	"	"	"
Bromomethane	ND	9.4	"	"	"	"	"	"
1,3-Butadiene	ND	9.4	"	"	"	"	"	"
Carbon disulfide	ND	9.4	"	"	"	"	"	"
Carbon tetrachloride	ND	9.4	"	"	"	"	"	"
Chlorobenzene	ND	9.4	"	"	"	"	"	"
Chloroethane	ND	9.4	"	"	"	"	"	"
Chloroform	ND	9.4	"	"	"	"	"	"
Chloromethane	ND	9.4	"	"	"	"	"	"
Cyclohexane	ND	9.4	"	"	"	"	"	"
Dibromochloromethane	ND	9.4	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	9.4	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	9.4	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	9.4	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	9.4	"	"	"	"	"	"
Dichlorodifluoromethane	ND	9.4	"	"	"	"	"	"
1,1-Dichloroethane	ND	9.4	"	"	"	"	"	"
1,2-Dichloroethane	ND	9.4	"	"	"	"	"	"
1,1-Dichloroethene	ND	9.4	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	9.4	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	9.4	"	"	"	"	"	"
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	9.4	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	9.4	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	9.4	"	"	"	"	"	"
Diisopropyl Ether	ND	9.4	"	"	"	"	"	"
1,4-Dioxane	ND	9.4	"	"	"	"	"	"
Ethanol	ND	37	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 14:34

TB024B 1500806-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Envi	ronmental	and	Compl	liance
---------------	-----------	-----	-------	--------

Volatile Organic Compounds by EPA M	Method TO-15							R-02, TS-3
Ethyl Acetate	ND	9.4	ppbv	18.7	B5C0189	06-Mar-15	07-Mar-15	TO-15 mod.
Ethylbenzene	ND	9.4	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	9.4	"	"	"	"	"	"
4-Ethyltoluene	ND	9.4	"	"	"	"	"	"
Heptane	ND	9.4	"	"	"	"	"	"
Hexachlorobutadiene	ND	9.4	"	"	"	"	"	"
Hexane	ND	9.4	"	"	"	"	"	"
2-Hexanone	ND	9.4	"	"	"	"	"	"
Isopropyl alcohol	ND	9.4	"	"	"	"	"	"
Methylene chloride	ND	9.4	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	9.4	"	"	"	"	"	"
Methyl Isobutyl Ketone	ND	9.4	"	"	"	"	"	"
Methyl-t-butyl ether	ND	9.4	"	"	"	"	"	"
Naphthalene	ND	19	"	"	"	"	"	"
Propylene	ND	9.4	"	"	"	"	"	"
Styrene	ND	9.4	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	9.4	"	"	"	"	"	"
t-Butyl alcohol	ND	9.4	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	9.4	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	9.4	"	"	"	"	"	"
Tetrahydrofuran	ND	9.4	"	"	"	"	"	"
Toluene	ND	9.4	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	9.4	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	9.4	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	9.4	"	"	"	"	"	"
Trichloroethene (TCE)	ND	9.4	"	"	"	"	"	"
Trichlorofluoromethane	ND	9.4	"	"	"	"	"	"
1,1,2-Trichlorotrifluoroethane	ND	9.4	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	9.4	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	9.4	"	"	"	"	"	"
Vinyl acetate	ND	9.4	"	"	"	"	"	"
Vinyl chloride	ND	9.4	"	"	"	"	"	"
Xylenes (total)	ND	9.4	"	"	"	"	"	"
TPH Gasoline (C4-C12)	ND	3700	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 14:34

TB025B 1500806-04 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes Limit

		Lilliit							
	Oilfield Envi	ronme	ental a	and Co	mpliand	ce			
Volatile Organic Compounds by EPA	Method TO-15							R-05	, TS-3
Acetone	ND	72	ppbv	35.95	B5C0189	06-Mar-15	07-Mar-15	TO-15 mod.	

Benzyl chloride	Acetone	ND	72	ppbv	35.95	B5C0189	06-Mar-15	07-Mar-15	TO-15 mod.
Bromodichloromethane ND 18 "	Benzene	53	18	"	"	"	"	"	"
Bromoferm ND	Benzyl chloride	ND	18	"	"	"	"	"	"
Bromomethane ND 18 " " " " " " " " " " " " " " " " " "	Bromodichloromethane	ND	18	"	"	"	"	"	"
1.3-Butadiene	Bromoform	ND	18	"	"	"	"	"	"
Carbon tetrachloride	Bromomethane	ND	18	"	"	"	"	"	"
Carbon tetrachloride	1,3-Butadiene	ND	18	"	"	"	"	"	"
Chlorobenzene	Carbon disulfide	ND	18	"	"	"	"	"	"
Chlorotelane ND	Carbon tetrachloride	ND	18	"	"	"	"	"	"
Chloroform	Chlorobenzene	ND	18	"	"	"	"	"	"
Chloromethane ND	Chloroethane	ND	18	"	"	"	"	"	"
Cyclohexane S7	Chloroform	ND	18	"	"	"	"	"	"
Dibromochloromethane ND 18	Chloromethane	ND	18	"	"	"	"	"	"
1,2-Dichlorobenzene ND 18	Cyclohexane	87	18	"	"	"	"	"	"
1,2-Dichlorobenzene	Dibromochloromethane			"	"	"	"	"	"
1,3-Dichlorobenzene ND 18	1,2-Dibromoethane (EDB)	ND	18	"	"	"	"	"	"
1,4-Dichlorobenzene ND 18 "	1,2-Dichlorobenzene			"	"	"	"	"	"
Dichlorodifluoromethane ND 18 """"""""""""""""""""""""""""""""""""	1,3-Dichlorobenzene	ND	18	"	"	"	"	"	"
1,1-Dichloroethane ND 18 "	1,4-Dichlorobenzene	ND	18	"	"	"	"	"	"
1,2-Dichloroethane ND 18 " " " " " " " " " " " " " " " " "	Dichlorodifluoromethane	ND	18	"	"	"	"	"	"
1,1-Dichloroethene	1,1-Dichloroethane	ND	18	"	"	"	"	"	"
cis-1,2-Dichloroethene ND 18 " </td <td>1,2-Dichloroethane</td> <td>ND</td> <td>18</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td>	1,2-Dichloroethane	ND	18	"	"	"	"	"	"
trans-1,2-Dichloroethene ND 18 "	1,1-Dichloroethene	ND	18	"	"	"	"	"	"
1,2-Dichloropropane ND 18 "	cis-1,2-Dichloroethene	ND	18	"	"	"	"	"	"
cis-1,3-Dichloropropene ND 18 " " " " " " " " " " " " " " " " " "	trans-1,2-Dichloroethene	ND	18	"	"	"	"	"	"
trans-1,3-Dichloropropene ND 18 "	1,2-Dichloropropane	ND	18	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 18 " <td>cis-1,3-Dichloropropene</td> <td>ND</td> <td>18</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td>	cis-1,3-Dichloropropene	ND	18	"	"	"	"	"	"
Diisopropyl Ether ND 18 "	trans-1,3-Dichloropropene	ND	18	"	"	"	"	"	"
1,4-Dioxane ND 18 " <	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	18	"	"	"	"	"	"
Ethanol 95 72 "	Diisopropyl Ether	ND	18	"	"	"	"	"	"
Ethyl Acetate ND 18 "	1,4-Dioxane	ND	18	"	"	"	"	"	"
Ethylbenzene ND 18 "			72	"	"	"	"	"	"
Ethyl t-Butyl Ether ND 18 " " " " " "	•		18		"	"	"	"	"
	-	ND	18	"	"	"	"	"	"
4 To 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	ND	18	"	"	"	"	"	"
4-Ethyltoluene ND 18 " " " " " "	4-Ethyltoluene	ND	18	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 14:34

TB025B 1500806-04 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EP	A Method TO-15							R-05, TS-3
Heptane	35	18	ppbv	35.95	B5C0189	06-Mar-15	07-Mar-15	TO-15 mod.
Hexachlorobutadiene	ND	18	"	"	"	"	"	II .
Hexane	73	18	"	"	"	"	"	II .
2-Hexanone	ND	18	"	"	"	"	"	"
Isopropyl alcohol	ND	18	"	"	"	"	"	II .
Methylene chloride	ND	18	"	"	"	"	"	"
Methyl Ethyl Ketone	ND	18	"	"	"	"	"	II .
Methyl Isobutyl Ketone	ND	18	"	"	"	"	"	II .
Methyl-t-butyl ether	ND	18	"	"	"	"	"	II .
Naphthalene	ND	36	"	"	"	"	"	II .
Propylene	ND	18	"	"	"	"	"	II .
Styrene	ND	18	"	"	"	"	"	II .
t-Amyl Methyl Ether	ND	18	"	"	"	"	"	II .
t-Butyl alcohol	ND	18	"	"	"	"	"	II .
1,1,2,2-Tetrachloroethane	ND	18	"	"	"	"	"	II .
Tetrachloroethene (PCE)	ND	18	"	"	"	"	"	II .
Tetrahydrofuran	ND	18	"	"	"	"	"	II .
Toluene	29	18	"	"	"	"	"	II .
1,2,4-Trichlorobenzene	ND	18	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	18	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	18	"	"	"	"	"	II .
Trichloroethene (TCE)	ND	18	"	"	"	"	"	II .
Trichlorofluoromethane	ND	18	"	"	"	"	"	II .
1,1,2-Trichlorotrifluoroethane	ND	18	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	18	"	"	"	"	"	II .
1,3,5-Trimethylbenzene	ND	18	"	"	"	"	"	II .
Vinyl acetate	ND	18	"	"	"	"	"	II .
Vinyl chloride	ND	18	"	"	"	"	"	II .
Xylenes (total)	ND	18	"	"	"	"	"	II .
TPH Gasoline (C4-C12)	ND	7200	"	"	"	"	"	m .

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 14:08

TB026A/B 1500835-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1		Limit				-	-		

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15								TS-3
Acetone	ND	35	ppbv	17.73	B5C0189	06-Mar-15	07-Mar-15	TO-15 mod.	
Benzene	ND	8.9	"	"	"	"	"	"	
Benzyl chloride	ND	8.9	"	"	"	"	"	"	
Bromodichloromethane	ND	8.9	"	"	"	"	"	"	
Bromoform	ND	8.9	"	"	"	"	"	"	
Bromomethane	ND	8.9	"	"	"	"	"	"	
1,3-Butadiene	ND	8.9	"	"	"	"	"	"	
Carbon disulfide	ND	8.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.9	"	"	"	"	"	"	
Chlorobenzene	ND	8.9	"	"	"	"	"	"	
Chloroethane	ND	8.9	"	"	"	"	"	"	
Chloroform	ND	8.9	"	"	"	"	"	"	
Chloromethane	ND	8.9	"	"	"	"	"	"	
Cyclohexane	ND	8.9	"	"	"	"	"	"	
Dibromochloromethane	ND	8.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	8.9	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.9	"	"	"	"	"	"	
Diisopropyl Ether	ND	8.9	"	"	"	"	"	"	
1,4-Dioxane	ND	8.9	"	"	"	"	"	"	
Ethanol	110	35	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 14:08

TB026A/B 1500835-01 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA Me	ethod TO-15								TS-3
Ethyl Acetate	ND	8.9	ppbv	17.73	B5C0189	06-Mar-15	07-Mar-15	TO-15 mod.	
Ethylbenzene	ND	8.9	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.9	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.9	"	"	"	"	"	"	
Heptane	ND	8.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	8.9	"	"	"	"	"	"	
Hexane	ND	8.9	"	"	"	"	"	"	
2-Hexanone	ND	8.9	"	"	"	"	"	"	
Isopropyl alcohol	ND	8.9	"	"	"	"	"	"	
Methylene chloride	ND	8.9	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.9	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.9	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.9	"	"	"	"	"	"	
Naphthalene	ND	18	"	"	"	"	"	"	
Propylene	ND	8.9	"	"	"	"	"	"	
Styrene	ND	8.9	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.9	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.9	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.9	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.9	"	"	"	"	"	"	
Toluene	9.2	8.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	8.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.9	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.9	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.9	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.9	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.9	"	"	"	"	"	"	
Vinyl acetate	ND	8.9	"	"	"	"	"	"	
Vinyl chloride	ND	8.9	"	"	"	"	"	"	
Xylenes (total)	ND	8.9	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3500	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 14:08

TB027A/B 1500835-02 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		1 Timet				1	-		

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA	Method TO-15								TS-3
Acetone	ND	36	ppbv	17.95	B5C0189	06-Mar-15	07-Mar-15	TO-15 mod.	
Benzene	ND	9.0	"	"	"	"	"	"	
Benzyl chloride	ND	9.0	"	"	"	"	"	"	
Bromodichloromethane	ND	9.0	"	"	"	"	"	"	
Bromoform	ND	9.0	"	"	"	"	"	"	
Bromomethane	ND	9.0	"	"	"	"	"	"	
1,3-Butadiene	ND	9.0	"	"	"	"	"	"	
Carbon disulfide	ND	9.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	9.0	"	"	"	"	"	"	
Chlorobenzene	ND	9.0	"	"	"	"	"	"	
Chloroethane	ND	9.0	"	"	"	"	"	"	
Chloroform	ND	9.0	"	"	"	"	"	"	
Chloromethane	ND	9.0	"	"	"	"	"	"	
Cyclohexane	ND	9.0	"	"	"	"	"	"	
Dibromochloromethane	ND	9.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	9.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	9.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	9.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	9.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	9.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	9.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	9.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	9.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	9.0	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	9.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.0	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	9.0	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	9.0	"	"	"	"	"	"	
Diisopropyl Ether	ND	9.0	"	"	"	"	"	"	
1,4-Dioxane	ND	9.0	"	"	"	"	"	"	
Ethanol	84	36	"	"	"	"	"	"	
Ethyl Acetate	ND	9.0	"	"	"	"	"	"	
Ethylbenzene	ND	9.0	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	9.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	9.0	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 14:08

TB027A/B 1500835-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA	Method TO-15								TS-3
Heptane	ND	9.0	ppbv	17.95	B5C0189	06-Mar-15	07-Mar-15	TO-15 mod.	
Hexachlorobutadiene	ND	9.0	"	"	"	"	"	"	
Hexane	ND	9.0	"	"	"	"	"	"	
2-Hexanone	ND	9.0	"	"	"	"	"	"	
Isopropyl alcohol	ND	9.0	"	"	"	"	"	"	
Methylene chloride	ND	9.0	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	9.0	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	9.0	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	9.0	"	"	"	"	"	"	
Naphthalene	ND	18	"	"	"	"	"	"	
Propylene	ND	9.0	"	"	"	"	"	"	
Styrene	ND	9.0	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	9.0	"	"	"	"	"	"	
t-Butyl alcohol	ND	9.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	9.0	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	9.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	9.0	"	"	"	"	"	"	
Toluene	ND	9.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	9.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	9.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	9.0	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	9.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	9.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	9.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	9.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	9.0	"	"	"	"	"	"	
Vinyl acetate	ND	9.0	"	"	"	"	"	"	
Vinyl chloride	ND	9.0	"	"	"	"	"	"	
Xylenes (total)	ND	9.0	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3600	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 10:14

TB028A 1500853-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Limit				•	-		

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15								TS-
Acetone	ND	39	ppbv	19.5	B5C0204	07-Mar-15	07-Mar-15	TO-15 mod.	
Benzene	9.8	9.8	"	"	"	"	"	"	
Benzyl chloride	ND	9.8	"	"	"	"	"	"	
Bromodichloromethane	ND	9.8	"	"	"	"	"	"	
Bromoform	ND	9.8	"	"	"	"	"	"	
Bromomethane	ND	9.8	"	"	"	"	"	"	
1,3-Butadiene	ND	9.8	"	"	"	"	"	"	
Carbon disulfide	ND	9.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	9.8	"	"	"	"	"	"	
Chlorobenzene	ND	9.8	"	"	"	"	"	"	
Chloroethane	ND	9.8	"	"	"	"	"	"	
Chloroform	ND	9.8	"	"	"	"	"	"	
Chloromethane	ND	9.8	"	"	"	"	"	"	
Cyclohexane	17	9.8	"	"	"	"	"	"	
Dibromochloromethane	ND	9.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	9.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	9.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	9.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	9.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	9.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	9.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	9.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	9.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	9.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	9.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	9.8	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	9.8	"	"	"	"	"	"	
Diisopropyl Ether	ND	9.8	"	"	"	"	"	"	
1,4-Dioxane	ND	9.8	"	"	"	"	"	"	
Ethanol	ND	39	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 10:14

TB028A 1500853-01 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Olifiela	Environr	nentai	and	Compil	ance

Volatile Organic Compounds by EPA Met	thod TO-15								TS-3
Ethyl Acetate	ND	9.8	ppbv	19.5	B5C0204	07-Mar-15	07-Mar-15	TO-15 mod.	
Ethylbenzene	ND	9.8	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	9.8	"	"	"	"	"	"	
4-Ethyltoluene	ND	9.8	"	"	"	"	"	"	
Heptane	ND	9.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	9.8	"	"	"	"	"	"	
Hexane	16	9.8	"	"	"	"	"	"	
2-Hexanone	ND	9.8	"	"	"	"	"	"	
Isopropyl alcohol	ND	9.8	"	"	"	"	"	"	
Methylene chloride	ND	9.8	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	9.8	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	9.8	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	9.8	"	"	"	"	"	"	
Naphthalene	ND	20	"	"	"	"	"	"	
Propylene	ND	9.8	"	"	"	"	"	"	
Styrene	ND	9.8	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	9.8	"	"	"	"	"	"	
t-Butyl alcohol	ND	9.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	9.8	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	9.8	"	"	"	"	"	"	
Tetrahydrofuran	ND	9.8	"	"	"	"	"	"	
Toluene	ND	9.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	9.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	9.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	9.8	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	9.8	"	"	"	"	"	"	
Trichlorofluoromethane	ND	9.8	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	9.8	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	9.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	9.8	"	"	"	"	"	"	
Vinyl acetate	ND	9.8	"	"	"	"	"	"	
Vinyl chloride	ND	9.8	"	"	"	"	"	"	
Xylenes (total)	ND	9.8	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3900	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 10:14

TB029B 1500853-02 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilfield E	nvironm	ental a	and Con	nplian	се			

		•	orriar a	00	p.i.a.i.v				
Volatile Organic Compounds by EPA	Method TO-15								TS-3
Acetone	ND	37	ppbv	18.5	B5C0204	07-Mar-15	08-Mar-15	TO-15 mod.	
Benzene	21	9.3	"	"	"	"	"	"	
Benzyl chloride	ND	9.3	"	"	"	"	"	"	
Bromodichloromethane	ND	9.3	"	"	"	"	"	"	
Bromoform	ND	9.3	"	"	"	"	"	"	
Bromomethane	ND	9.3	"	"	"	"	"	"	
1,3-Butadiene	ND	9.3	"	"	"	"	"	"	
Carbon disulfide	ND	9.3	"	"	"	"	"	"	
Carbon tetrachloride	ND	9.3	"	"	"	"	"	"	
Chlorobenzene	ND	9.3	"	"	"	"	"	"	
Chloroethane	ND	9.3	"	"	"	"	"	"	
Chloroform	ND	9.3	"	"	"	"	"	"	
Chloromethane	ND	9.3	"	"	"	"	"	"	
Cyclohexane	55	9.3	"	"	"	"	"	"	
Dibromochloromethane	ND	9.3	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	9.3	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	9.3	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	9.3	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	9.3	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	9.3	"	"	"	"	"	"	
1,1-Dichloroethane	ND	9.3	"	"	"	"	"	"	
1,2-Dichloroethane	ND	9.3	"	"	"	"	"	"	
1,1-Dichloroethene	ND	9.3	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	9.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	9.3	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.3	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	9.3	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	9.3	"	"	"	"	"	"	
Diisopropyl Ether	ND	9.3	"	"	"	"	"	"	
1,4-Dioxane	ND	9.3	"	"	"	"	"	"	
Ethanol	61	37	"	"	"	"	"	"	
Ethyl Acetate	ND	9.3	"	"	"	"	"	"	
Ethylbenzene	ND	9.3	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	9.3	"	"	"	"	"	"	
· · · · · · · · · · · · · · · · · · ·									

Oilfield Environmental and Compliance

4-Ethyltoluene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

9.3

ND

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum10-Mar-15 10:14

TB029B 1500853-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes
--

		LIIIII												
	Oilfield Envi	ronm	ental a	nd Co	ompliance									
Volatile Organic Compounds b	y EPA Method TO-15								TS-3					
Heptane	29	9.3	ppbv	18.5	B5C0204	07-Mar-15	08-Mar-15	TO-15 mod.						
Hexachlorobutadiene	ND	9.3	"	"	"	"	"	"						
II	20	0.2	"	"	.,		.,	,,						

Hexachlorobutadiene	ND	9.3	"	"	"	"	"	"	
Hexane	39	9.3	"	"	"	"	"	"	
2-Hexanone	ND	9.3	"	"	"	"	"	"	
Isopropyl alcohol	ND	9.3	"	"	"	"	"	"	
Methylene chloride	ND	9.3	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	9.3	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	9.3	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	9.3	"	"	"	"	"	"	
Naphthalene	ND	19	"	"	"	"	"	"	
Propylene	ND	9.3	"	"	"	"	"	"	
Styrene	ND	9.3	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	9.3	"	"	"	"	"	"	
t-Butyl alcohol	ND	9.3	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	9.3	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	9.3	"	"	"	"	"	"	
Tetrahydrofuran	ND	9.3	"	"	"	"	"	"	
Toluene	15	9.3	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	9.3	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	9.3	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	9.3	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	9.3	"	"	"	"	"	"	
Trichlorofluoromethane	ND	9.3	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	9.3	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	9.3	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	9.3	"	"	"	"	"	"	
Vinyl acetate	ND	9.3	"	"	"	"	"	"	
Vinyl chloride	ND	9.3	"	"	"	"	"	"	
Xylenes (total)	ND	9.3	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3700	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum11-Mar-15 16:23

TB030A/B 1500870-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1		Limit				-	-		

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15								TS-3
Acetone	ND	39	ppbv	19.53	B5C0244	09-Mar-15	09-Mar-15	TO-15 mod.	
Benzene	ND	9.8	"	"	"	"	"	"	
Benzyl chloride	ND	9.8	"	"	"	"	"	"	
Bromodichloromethane	ND	9.8	"	"	"	"	"	"	
Bromoform	ND	9.8	"	"	"	"	"	"	
Bromomethane	ND	9.8	"	"	"	"	"	"	
1,3-Butadiene	ND	9.8	"	"	"	"	"	"	
Carbon disulfide	ND	9.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	9.8	"	"	"	"	"	"	
Chlorobenzene	ND	9.8	"	"	"	"	"	"	
Chloroethane	ND	9.8	"	"	"	"	"	"	
Chloroform	ND	9.8	"	"	"	"	"	"	
Chloromethane	ND	9.8	"	"	"	"	"	"	
Cyclohexane	ND	9.8	"	"	"	"	"	"	
Dibromochloromethane	ND	9.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	9.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	9.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	9.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	9.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	9.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	9.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	9.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	9.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	9.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	9.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	9.8	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	9.8	"	"	"	"	"	"	
Diisopropyl Ether	ND	9.8	"	"	"	"	"	"	
1,4-Dioxane	ND	9.8	"	"	"	"	"	"	
Ethanol	61	39	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum11-Mar-15 16:23

TB030A/B 1500870-01 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA Met	thod TO-15								TS-3
Ethyl Acetate	ND	9.8	ppbv	19.53	B5C0244	09-Mar-15	09-Mar-15	TO-15 mod.	
Ethylbenzene	ND	9.8	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	9.8	"	"	"	"	"	"	
4-Ethyltoluene	ND	9.8	"	"	"	"	"	"	
Heptane	ND	9.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	9.8	"	"	"	"	"	"	
Hexane	ND	9.8	"	"	"	"	"	"	
2-Hexanone	ND	9.8	"	"	"	"	"	"	
Isopropyl alcohol	ND	9.8	"	"	"	"	"	"	
Methylene chloride	ND	9.8	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	9.8	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	9.8	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	9.8	"	"	"	"	"	"	
Naphthalene	ND	20	"	"	"	"	"	"	
Propylene	ND	9.8	"	"	"	"	"	"	
Styrene	ND	9.8	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	9.8	"	"	"	"	"	"	
t-Butyl alcohol	ND	9.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	9.8	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	9.8	"	"	"	"	"	"	
Tetrahydrofuran	ND	9.8	"	"	"	"	"	"	
Toluene	9.8	9.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	9.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	9.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	9.8	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	9.8	"	"	"	"	"	"	
Trichlorofluoromethane	ND	9.8	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	9.8	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	9.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	9.8	"	"	"	"	"	"	
Vinyl acetate	ND	9.8	"	"	"	"	"	"	
Vinyl chloride	ND	9.8	"	"	"	"	"	"	
Xylenes (total)	ND	9.8	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3900	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum11-Mar-15 16:23

TB031A/B 1500870-02 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA Method TO-15										
Acetone	ND	40	ppbv	20	B5C0244	09-Mar-15	09-Mar-15	TO-15 mod.		
Benzene	23	10	"	"	"	"	"	"		
Benzyl chloride	ND	10	"	"	"	"	"	"		
Bromodichloromethane	ND	10	"	"	"	"	"	"		
Bromoform	ND	10	"	"	"	"	"	"		
Bromomethane	ND	10	"	"	"	"	"	"		
1,3-Butadiene	ND	10	"	"	"	"	"	"		
Carbon disulfide	ND	10	"	"	"	"	"	"		
Carbon tetrachloride	ND	10	"	"	"	"	"	"		
Chlorobenzene	ND	10	"	"	"	"	"	"		
Chloroethane	ND	10	"	"	"	"	"	"		
Chloroform	ND	10	"	"	"	"	"	"		
Chloromethane	ND	10	"	"	"	"	"	"		
Cyclohexane	92	10	"	"	"	"	"	"		
Dibromochloromethane	ND	10	"	"	"	"	"	"		
1,2-Dibromoethane (EDB)	ND	10	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	10	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	10	"	"	"	"	"	"		
1,4-Dichlorobenzene	ND	10	"	"	"	"	"	"		
Dichlorodifluoromethane	ND	10	"	"	"	"	"	"		
1,1-Dichloroethane	ND	10	"	"	"	"	"	"		
1,2-Dichloroethane	ND	10	"	"	"	"	"	"		
1,1-Dichloroethene	ND	10	"	"	"	"	"	"		
cis-1,2-Dichloroethene	ND	10	"	"	"	"	"	"		
trans-1,2-Dichloroethene	ND	10	"	"	"	"	"	"		
1,2-Dichloropropane	ND	10	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	10	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	10	"	"	"	"	"	"		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	10	"	"	"	"	"	"		
Diisopropyl Ether	ND	10	"	"	"	"	"	"		
1,4-Dioxane	ND	10	"	"	"	"	"	"		
Ethanol	74	40	"	"	"	"	"	"		
Ethyl Acetate	ND	10	"	"	"	"	"	"		
Ethylbenzene	ND	10	"	"	"	"	"	"		
Ethyl t-Butyl Ether	ND	10	"	"	"	"	"	"		
4-Ethyltoluene	ND	10	"	"	"	"	"	"		

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB 720 West Arapaho Road Project Number: CARB #1344 Reported: Richardson TX, 75080 Project Manager: David Ranum 11-Mar-15 16:23

TB031A/B 1500870-02 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-		Limit				•	•		

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA Method TO-15									
Heptane	57	10	ppbv	20	B5C0244	09-Mar-15	09-Mar-15	TO-15 mod.	
Hexachlorobutadiene	ND	10	"	"	"	"	"	"	
Hexane	100	10	"	"	"	"	"	"	
2-Hexanone	ND	10	"	"	"	"	"	"	
Isopropyl alcohol	ND	10	"	"	"	"	"	"	
Methylene chloride	ND	10	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	10	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	10	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	10	"	"	"	"	"	"	
Naphthalene	ND	20	"	"	"	"	"	"	
Propylene	ND	10	"	"	"	"	"	"	
Styrene	ND	10	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	10	"	"	"	"	"	"	
t-Butyl alcohol	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	10	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	10	"	"	"	"	"	"	
Tetrahydrofuran	ND	10	"	"	"	"	"	"	
Toluene	23	10	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	10	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	10	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	10	"	"	"	"	"	"	
Trichlorofluoromethane	ND	10	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	10	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	10	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	10	"	"	"	"	"	"	
Vinyl acetate	ND	10	"	"	"	"	"	"	
Vinyl chloride	ND	10	"	"	"	"	"	"	
Xylenes (total)	11	10	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	4000	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum11-Mar-15 16:23

TB032A/B 1500870-03 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Limit							

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA	Method TO-15								TS-1
Acetone	ND	40	ppbv	20	B5C0204	07-Mar-15	08-Mar-15	TO-15 mod.	
Benzene	11	10	"	"	"	"	"	"	
Benzyl chloride	ND	10	"	"	"	"	"	"	
Bromodichloromethane	ND	10	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
Bromomethane	ND	10	"	"	"	"	"	"	
1,3-Butadiene	ND	10	"	"	"	"	"	"	
Carbon disulfide	ND	10	"	"	"	"	"	"	
Carbon tetrachloride	ND	10	"	"	"	"	"	"	
Chlorobenzene	ND	10	"	"	"	"	"	"	
Chloroethane	ND	10	"	"	"	"	"	"	
Chloroform	ND	10	"	"	"	"	"	"	
Chloromethane	ND	10	"	"	"	"	"	"	
Cyclohexane	ND	10	"	"	"	"	"	"	
Dibromochloromethane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	10	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	10	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	10	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	10	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	10	"	"	"	"	"	"	
1,1-Dichloroethane	ND	10	"	"	"	"	"	"	
1,2-Dichloroethane	ND	10	"	"	"	"	"	"	
1,1-Dichloroethene	ND	10	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	10	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	10	"	"	"	"	"	"	
1,2-Dichloropropane	ND	10	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	10	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	10	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	10	"	"	"	"	"	"	
Diisopropyl Ether	ND	10	"	"	"	"	"	"	
1,4-Dioxane	ND	10	"	"	"	"	"	"	
Ethanol	ND	40	"	"	"	"	"	"	
Ethyl Acetate	ND	10	"	"	"	"	"	"	
Ethylbenzene	ND	10	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	10	"	"	"	"	"	"	
4-Ethyltoluene	ND	10	"		"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental ConsultingProject: CARB720 West Arapaho RoadProject Number: CARB #1344Reported:Richardson TX, 75080Project Manager: David Ranum11-Mar-15 16:23

TB032A/B 1500870-03 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA	A Method TO-15								TS-
Heptane	ND	10	ppbv	20	B5C0204	07-Mar-15	08-Mar-15	TO-15 mod.	
Hexachlorobutadiene	ND	10	"	"	"	"	"	"	
Hexane	17	10	"	"	"	"	"	"	
2-Hexanone	ND	10	"	"	"	"	"	"	
Isopropyl alcohol	ND	10	"	"	"	"	"	"	
Methylene chloride	ND	10	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	10	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	10	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	10	"	"	"	"	"	"	
Naphthalene	ND	20	"	"	"	"	"	"	
Propylene	ND	10	"	"	"	"	"	"	
Styrene	ND	10	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	10	"	"	"	"	"	"	
t-Butyl alcohol	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	10	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	10	"	"	"	"	"	"	
Tetrahydrofuran	ND	10	"	"	"	"	"	"	
Toluene	11	10	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	10	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	10	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	10	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	10	"	"	"	"	"	"	
Гrichlorofluoromethane	ND	10	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	10	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	10	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	10	"	"	"	"	"	"	
Vinyl acetate	ND	10	"	"	"	"	"	"	
Vinyl chloride	ND	10	"	"	"	"	"	"	
Xylenes (total)	ND	10	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	4000	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 215096

Laboratory ID:

01

File Name: 1509601B.D Description: 1500906-01 Can/Tube#: TBAG

QC_Batch: 030415-MA1

Date Sampled: 03/02/15 Date Analyzed: 03/04/15

Time: 00:00 Time: 12:45

Can Dilution Factor:

1.00 Air Volume:

0.10 ml

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	503	1,006	ND	2,486	4,972	ND	
74-87-3	Chloromethane	503	1,006	ND	1,038	2,077	ND	
76-14-2	Freon 114	503	1,006	ND	3,514	7,028	ND	
75-01-4	Vinyl chloride	503	1,006	ND	1,285	2,570	ND	
106-99-0	1,3-Butadiene	503	1,006	ND	1,112	2,225	ND	
74-83-9	Bromomethane	503	1,006	ND	1,951	3,903	ND	
75-00-3	Chloroethane	503	1,006	ND	1,326	2,653	ND	
64-17-5	Ethanol	10,000	20,000	ND	18,845	37,691	ND	
75-69-4	Trichlorofluoromethane	5,000	10,000	ND	28,084	56,168	ND	
67-64-1	Acetone	5,000	10,000	ND	11,875	23,751	ND	
67-63-0	2-propanol	5,000	10,000	ND	12,284	24,569	ND	
75-65-0	t-Butanol	10,000	20,000	ND	30,292	60,583	ND	
75-35-4	1,1-Dichloroethene	5,000	10,000	ND	19,806	39,612	ND	
76-13-1	Freon 113	500	1,000	ND	3,830	7,661	ND	
75-09-2	Dichloromethane	1,000	2,000	ND	3,471	6,941	ND	
75-15-0	Carbon disulfide	5,000	10,000	ND	15,555	31,109	ND	
156-60-5	trans-1,2-Dichloroethene	500	1,000	ND	1,981	3,961	ND	
1634-04-4	Methyl tert butyl ether	500	1,000	ND	1,801	3,601	ND	
75-34-3	1,1-Dichloroethane	499	997	ND	2,018	4,037	ND	
637-92-3	Ethyl tert butyl ether	500	1,000	ND	2,089	4,178	ND	
108-05-4	Vinyl acetate	500	1,000	ND	1,760	3,520	ND	
78-93-3	2-Butanone	2,000	4,000	ND	5,895	11,790	ND	
108-20-3	Diisopropyl ether	2,000	4,000	ND	8,356	16,711	ND	
110-54-3	Hexane	2,500	5,000	444,119	8,810	17,619	1,564,989	Ē
141-78-6	Ethyl acetate	5,000	10,000	ND	18,007	36,015	ND	
109-99-9	Tetrahydrofuran	503	1,006	ND	1,483	2,965	ND	
156-59-2	cis-1,2-Dichloroethene	537	1,074	ND	2,127	4,254	ND	
67-66-3	Chloroform	502	1,003	ND	2,448	4,896	ND	
71-55-6	1,1,1-Trichloroethane	500	1,000	ND	2,727	5,453	ND	
107-06-2	1,2-Dichloroethane	500	1,000	ND	2,024	4,047	ND	
110-82-7	Cyclohexane	500	1,000	175,668	1,721	3,442	604,656	
71-43-2	Benzene	1,000	2,000	80,493	3,193	6,385	256,989	
56-23-5	Carbon tetrachloride	500	1,000	ND	3,144	6,287	ND	
142-82-5	n-Heptane	5,000	10,000	37,978	20,481	40,961	155,564	
78-87-5	1,2-Dichloropropane	500	1,000	ND	2,310	4,619	ND	
123-91-1	1,4-Dioxane	1,000	2,000	ND	3,601	7,203	ND	
994-05-8	t-Amyl Methyl Ether	500	1,000	ND	3,552	7,105	ND	

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
79-01-6	Trichloroethene	250	500	ND	1,343	2,686	ND	
75-27-4	Bromodichloromethane	500	1,000	ND	3,348	6,696	ND	
108-10-1	4-Methyl-2-pentanone	5,000	10,000	ND	20,481	40,961	ND	
10061-01-5	cis-1,3-Dichloropropene	500	1,000	ND	2,269	4,538	ND	
108-88-3	Toluene	1,000	2,000	13,252	3,765	7,530	49,895	
10061-02-6	trans-1,3-Dichloropropene	500	1,000	ND	2,269	4,538	ND	
79-00-5	1,1,2-Trichloroethane	500	1,000	ND	2,727	5,453	ND	
591-78-6	2-Hexanone	5,000	10,000	ND	20,481	40,961	ND	
124-48-1	Dibromochloromethane	500	1,000	ND	4,258	8,515	ND	
106-93-4	1,2-Dibromoethane	500	1,000	ND	3,841	7,681	ND	
127-18-4	Tetrachloroethene	250	500	ND	1,694	3,389	ND	
108-90-7	Chlorobenzene	500	1,000	ND	2,302	4,603	ND	
100-41-4	Ethylbenzene	500	1,000	ND	2,171	4,341	ND	
1330-20-7	m,p-Xylenes	500	1,000	ND	2,171	4,341	ND	
100-42-5	Styrene	500	1,000	ND	2,130	4,260	ND	
75-25-2	Bromoform	500	1,000	ND	5,165	10,330	ND	
95-47-6	o-Xylene	500	1,000	ND	2,171	4,341	ND	
79-34-5	1,1,2,2-Tetrachloroethane	500	1,000	ND	3,430	6,860	ND	
622-96-8	4-Ethyltoluene	500	1,000	ND	2,457	4,914	ND	
108-67-8	1,3,5-Trimethylbenzene	500	1,000	ND	2,457	4,914	ND	
95-63-6	1,2,4-Trimethylbenzene	500	1,000	ND	2,457	4,914	ND	
541-73-1	1,3-Dichlorobenzene	1,000	2,000	ND	6,009	12,019	ND	
100-44-7	Benzyl chloride	1,000	2,000	ND	5,175	10,351	ND	
106-46-7	1,4-Dichlorobenzene	1,000	2,000	ND	6,009	12,019	ND	
95-50-1	1,2-Dichlorobenzene	1,000	2,000	ND	6,009	12,019	ND	
120-82-1	1,2,4-Trichlorobenzene	2,500	5,000	ND	18,539	37,078	ND	
91-20-3	Naphthalene	500	1,000	ND	2,620	5,241	ND	
87-68-3	Hexachlorobutadiene	2,500	5,000	ND	26,653	53,307	ND	
						QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				97	70	130	

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 215096

Laboratory ID:

File Name: 1509602B.D Description: 1500906-02 Can/Tube#: TBAG

QC_Batch: 030415-MA1

Date Sampled: 03/02/15 Date Analyzed: 03/04/15

Time: 00:00 Time: 15:19

Can Dilution Factor: 1.00

Air Volume: 20.00 ml

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	3	5	ND	12	25	ND	
74-87-3	Chloromethane	3	5	ND	5	10	ND	
76-14-2	Freon 114	3	5	ND	18	35	ND	
75-01-4	Vinyl chloride	3	5	ND	6	13	ND	
106-99-0	1,3-Butadiene	3	5	ND	6	11	ND	
74-83-9	Bromomethane	3	5	ND	10	20	ND	
75-00-3	Chloroethane	3	5	ND	7	13	ND	
64-17-5	Ethanol	50	100	ND	94	188	ND	
75-69-4	Trichlorofluoromethane	25	50	ND	140	281	ND	
67-64-1	Acetone	25	50	ND	59	119	ND	
67-63-0	2-propanol	25	50	ND	61	123	ND	
75-65-0	t-Butanol	50	100	ND	151	303	ND	
75-35-4	1,1-Dichloroethene	25	50	ND	99	198	ND	
76-13-1	Freon 113	3	5	ND	19	38	ND	
75-09-2	Dichloromethane	5	10	ND	17	35	ND	
75-15-0	Carbon disulfide	25	50	ND	78	156	ND	
156-60-5	trans-1,2-Dichloroethene	3	5	ND	10	20	ND	
1634-04-4	Methyl tert butyl ether	3	5	ND	9	18	ND	
75-34-3	1,1-Dichloroethane	2	5	ND	10	20	ND	
637-92-3	Ethyl tert butyl ether	3	5	ND	10	21	ND	
108-05-4	Vinyl acetate	3	5	ND	9	18	ND	
78-93-3	2-Butanone	10	20	ND	29	59	ND	
108-20-3	Diisopropyl ether	10	20	ND	42	84	ND	
110-54-3	Hexane	13	25	26	44	88	90	
141-78-6	Ethyl acetate	25	50	ND	90	180	ND	
109-99-9	Tetrahydrofuran	3	5	ND	7	15	ND	
156-59-2	cis-1,2-Dichloroethene	3	5	ND	11	21	ND	
67-66-3	Chloroform	3	5	ND	12	24	ND	
71-55-6	1,1,1-Trichloroethane	3	5	ND	14	27	ND	
107-06-2	1,2-Dichloroethane	3	5	ND	10	20	ND	
110-82-7	Cyclohexane	3	5	10	9	17	34	
71-43-2	Benzene	5	10	13	16	32	40	
56-23-5	Carbon tetrachloride	3	5	ND	16	31	ND	
142-82-5	n-Heptane	25	50	ND	102	205	ND	
78-87-5	1,2-Dichloropropane	3	5	ND	12	23	ND	
123-91-1	1,4-Dioxane	5	10	ND	18	36	ND	
994-05-8	t-Amyl Methyl Ether	3	5	ND	18	36	ND	

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
79-01-6	Trichloroethene	1	3	ND	7	13	ND	
75-27-4	Bromodichloromethane	3	5	ND	17	33	ND	
108-10-1	4-Methyl-2-pentanone	25	50	ND	102	205	ND	
10061-01-5	cis-1,3-Dichloropropene	3	5	ND	11	23	ND	
108-88-3	Toluene	5	10	12	19	38	46	
10061-02-6	trans-1,3-Dichloropropene	3	5	ND	11	23	ND	
79-00-5	1,1,2-Trichloroethane	3	5	ND	14	27	ND	
591-78-6	2-Hexanone	25	50	ND	102	205	ND	
124-48-1	Dibromochloromethane	3	5	ND	21	43	ND	
106-93-4	1,2-Dibromoethane	3	5	ND	19	38	ND	
127-18-4	Tetrachloroethene	1	3	ND	8	17	ND	
108-90-7	Chlorobenzene	3	5	ND	12	23	ND	
100-41-4	Ethylbenzene	3	5	ND	11	22	ND	
1330-20-7	m,p-Xylenes	3	5	ND	11	22	ND	
100-42-5	Styrene	3	5	ND	11	21	ND	
75-25-2	Bromoform	3	5	ND	26	52	NĐ	
95-47-6	o-Xylene	3	5	ND	11	22	ND	
79-34-5	1,1,2,2-Tetrachloroethane	3	5	ND	17	34	ND	
622-96-8	4-Ethyltoluene	3	5	ND	12	25	ND	
108-67-8	1,3,5-Trimethylbenzene	3	5	ND	12	25	ND	
95-63-6	1,2,4-Trimethylbenzene	3	5	ND	12	25	ND	
541-73-1	1,3-Dichlorobenzene	5	10	ND	30	60	ND	
100-44-7	Benzyl chloride	5	10	ND	26	52	ND	
106-46-7	1,4-Dichlorobenzene	5	10	ND	30	60	ND	
95-50-1	1,2-Dichlorobenzene	5	10	ND	30	60	ND	
120-82-1	1,2,4-Trichlorobenzene	13	25	ND	93	185	ND	
91-20-3	Naphthalene	3	5	ND	13	26	ND	
87-68-3	Hexachlorobutadiene	13	25	ND	133	267	ND	
<u> </u>						QC	Limits	· · · · · · · · · · · · · · · · · · ·
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				99	70	130	

Environmental Analytical Service, Inc.

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 215096

Laboratory ID:

03

File Name: 1509603B.D Description: 1500906-03

Date Sampled: 03/02/15 Date Analyzed: 03/04/15

Time: 00:00

Can/Tube#: TBAG QC_Batch: 030415-MA1

Can Dilution Factor:

1.00

Time: 16:00

Air Volume: 20.00 ml

**************************************		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	3	5	ND	12	25	ND	
74-87-3	Chloromethane	3	5	ND	5	10	ND	
76-14-2	Freon 114	3	5	ND	18	35	ND	
75-01-4	Vinyl chloride	3	5	ND	6	13	ND	
106-99-0	1,3-Butadiene	3	5	ND	6	11	ND	
74-83-9	Bromomethane	3	5	ND	10	20	ND	
75-00-3	Chloroethane	3	5	ND	7	13	ND	
64-17-5	Ethanol	50	100	ND	94	188	ND	
75-69-4	Trichlorofluoromethane	25	50	ND	140	281	ND	
67-64-1	Acetone	25	50	ND	59	119	ND	
67-63-0	2-propanol	25	50	ND	61	123	ND	
75-65-0	t-Butanol	50	100	ND	151	303	ND	
75-35-4	1,1-Dichloroethene	25	50	ND	99	198	ND	
76-13-1	Freon 113	3	5	ND	19	38	ND	
75-09-2	Dichloromethane	5	10	ND	17	35	ND	
75-15-0	Carbon disulfide	25	50	ND	78	156	ND	
156-60-5	trans-1,2-Dichloroethene	3	5	ND	10	20	ND	
1634-04-4	Methyl tert butyl ether	3	5	ND	9	18	ND	
75-34-3	1,1-Dichloroethane	2	5	ND	10	20	ND	
637-92-3	Ethyl tert butyl ether	3	5	ND	10	21	ND	
108-05-4	Vinyl acetate	3	5	ND	9	18	ND	
78-93-3	2-Butanone	10	20	ND	29	59	ND	
108-20-3	Diisopropyl ether	10	20	ND	42	84	ND	
110-54-3	Hexane	13	25	ND	44	88	ND	
141-78-6	Ethyl acetate	25	50	ND	90	180	ND	
109-99-9	Tetrahydrofuran	3	5	ND	7	15	ND	
156-59-2	cis-1,2-Dichloroethene	3	5	ND	11	21	ND	
67-66-3	Chloroform	3	5	ND	12	24	ND	
71-55-6	1,1,1-Trichloroethane	3	5	ND	14	27	ND	
107-06-2	1,2-Dichloroethane	3	5	ND	10	20	ND	
110-82-7	Cyclohexane	3	5	5	9	17	19	
71-43-2	Benzene	5	10	9	16	32	29	J
56-23-5	Carbon tetrachloride	3	5	ND	16	31	ND	
142-82-5	n-Heptane	25	50	ND	102	205	ND	
78-87-5	1,2-Dichloropropane	3	5	ND	12	23	ND	
123-91-1	1,4-Dioxane	5	10	ND	18	36	ND	
994-05-8	t-Amyl Methyl Ether	3	5	ND	18	36	ND	

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
79-01-6	Trichloroethene	1	3	ND	7	13	ND	
75-27-4	Bromodichloromethane	3	5	ND	17	33	ND	
108-10-1	4-Methyl-2-pentanone	25	50	ND	102	205	ND	
10061-01-5	cis-1,3-Dichloropropene	3	. 5	ND	11	23	ND	
108-88-3	Toluene	5	10	11	19	38	40	
10061-02-6	trans-1,3-Dichloropropene	3	5	ND	11	23	ND	
79-00-5	1,1,2-Trichloroethane	3	5	ND	14	27	ND	
591-78-6	2-Hexanone	25	50	ND	102	205	ND	
124-48-1	Dibromochloromethane	3	5	ND	21	43	ND	
106-93-4	1,2-Dibromoethane	3	5	ND	19	38	ND	
127-18-4	Tetrachloroethene	1	3	ND	8	17	ND	
108-90-7	Chlorobenzene	3	5	ND	12	23	ND	
100-41-4	Ethylbenzene	3	5	ND	11	22	ND	
1330-20-7	m,p-Xylenes	3	5	ND	11	22	ND	
100-42-5	Styrene	3	5	ND	11	21	ND	
75-25-2	Bromoform	3	5	ND	26	52	ND	
95-47-6	o-Xylene	3	5	ND	11	22	ND	
79-34-5	1,1,2,2-Tetrachloroethane	3	5	ND	17	34	ND	
322-96-8	4-Ethyltoluene	3	5	ND	12	25	ND	
108-67-8	1,3,5-Trimethylbenzene	3	5	ND	12	25	ND	
95-63-6	1,2,4-Trimethylbenzene	3	5	ND	12	25	ND	
541-73-1	1,3-Dichlorobenzene	5	10	ND	30	60	ND	
100-44-7	Benzyl chloride	5	10	ND	26	52	ND	
106-46-7	1,4-Dichlorobenzene	5	10	ND	30	60	ND	
95-50-1	1,2-Dichlorobenzene	5	10	ND	30	60	ND	
120-82-1	1,2,4-Trichlorobenzene	13	25	ND	93	185	ND	
91-20-3	Naphthalene	3	5	ND	13	26	ND	
87-68-3	Hexachlorobutadiene	13	25	ND	133	267	ND	
*************************************						QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				92	70	130	

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 215096

Laboratory ID:

File Name: 1509604A.D Description: 1500906-04 Can/Tube#: TBAG

Date Analyzed: 03/04/15

Date Sampled: 03/02/15

Time: 00:00 Time:

14:40

Can Dilution Factor:

1.00

QC_Batch: 030415-MA1

Air Volume: 0.10 ml

CAS# Compound PPBV PPBV PPBV UG/M3 UG/M3 UG/M3 75-71-8 Dichlorodifluoromethane 503 1,006 ND 2,486 4,972 ND	Flag
75-71-8 Dichlorodifluoromethane 503 1,006 ND 2,486 4,972 ND	
74-87-3 Chloromethane 503 1,006 ND 1,038 2,077 ND	
76-14-2 Freon 114 503 1,006 ND 3,514 7,028 ND	
75-01-4 Vinyl chloride 503 1,006 ND 1,285 2,570 ND	
106-99-0 1,3-Butadiene 503 1,006 ND 1,112 2,225 ND	
74-83-9 Bromomethane 503 1,006 ND 1,951 3,903 ND	
75-00-3 Chloroethane 503 1,006 ND 1,326 2,653 ND	
64-17-5 Ethanol 10,000 20,000 ND 18,845 37,691 ND	
75-69-4 Trichlorofluoromethane 5,000 10,000 ND 28,084 56,168 ND	
67-64-1 Acetone 5,000 10,000 ND 11,875 23,751 ND	
67-63-0 2-propanol 5,000 10,000 ND 12,284 24,569 ND	
75-65-0 t-Butanol 10,000 20,000 ND 30,292 60,583 ND	
75-35-4 1,1-Dichloroethene 5,000 10,000 ND 19,806 39,612 ND	
76-13-1 Freon 113 500 1,000 ND 3,830 7,661 ND	
75-09-2 Dichloromethane 1,000 2,000 ND 3,471 6,941 ND	
75-15-0 Carbon disulfide 5,000 10,000 ND 15,555 31,109 ND	
156-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,981 3,961 ND	
1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND	
75-34-3 1,1-Dichloroethane 499 997 ND 2,018 4,037 ND	
637-92-3 Ethyl tert butyl ether 500 1,000 ND 2,089 4,178 ND	
108-05-4 Vinyl acetate 500 1,000 733 1,760 3,520 2,579	J
78-93-3 2-Butanone 2,000 4,000 ND 5,895 11,790 ND	
108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND	
110-54-3 Hexane 2,500 5,000 ND 8,810 17,619 ND	
141-78-6 Ethyl acetate 5,000 10,000 ND 18,007 36,015 ND	
109-99-9 Tetrahydrofuran 503 1,006 563 1,483 2,965 1,658	J
156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND	
67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND	
71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND	
107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND	
110-82-7 Cyclohexane 500 1,000 ND 1,721 3,442 ND	
71-43-2 Benzene 1,000 2,000 ND 3,193 6,385 ND	
56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND	
142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND	
78-87-5 1,2-Dichloropropane 500 1,000 ND 2,310 4,619 ND	
123-91-1 1,4 Dioxane 1,000 2,000 ND 3,601 7,203 ND	
994-05-8 t-Amyl Methyl Ether 500 1,000 ND 3,552 7,105 ND	

		MDL	RL	Amount	MDL	RL	Amount	-
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
79-01-6	Trichloroethene	250	500	ND	1,343	2,686	ND	
75-27-4	Bromodichloromethane	500	1,000	ND	3,348	6,696	ND	
108-10-1	4-Methyl-2-pentanone	5,000	10,000	ND	20,481	40,961	ND	
10061-01-5	cis-1,3-Dichloropropene	500	1,000	ND	2,269	4,538	ND	
108-88-3	Toluene	1,000	2,000	ND	3,765	7,530	ND	
10061-02-6	trans-1,3-Dichloropropene	500	1,000	ND	2,269	4,538	ND	
79-00-5	1,1,2-Trichloroethane	500	1,000	ND	2,727	5,453	ND	
591-78-6	2-Hexanone	5,000	10,000	ND	20,481	40,961	ND	
124-48-1	Dibromochloromethane	500	1,000	ND	4,258	8,515	ND	
106-93-4	1,2-Dibromoethane	500	1,000	ND	3,841	7,681	ND	
127-18-4	Tetrachloroethene	250	500	ND	1,694	3,389	ND	
108-90-7	Chlorobenzene	500	1,000	ND	2,302	4,603	ND	
100-41-4	Ethylbenzene	500	1,000	ND	2,171	4,341	ND	
1330-20-7	m,p-Xylenes	500	1,000	ND	2,171	4,341	ND	
100-42-5	Styrene	500	1,000	ND	2,130	4,260	ND	
75-25-2	Bromoform	500	1,000	ND	5,165	10,330	ND	
95-47-6	o-Xylene	500	1,000	ND	2,171	4,341	ND	
79-34-5	1,1,2,2-Tetrachloroethane	500	1,000	ND	3,430	6,860	ND	
622-96-8	4-Ethyltoluene	500	1,000	ND	2,457	4,914	ND	
108-67-8	1,3,5-Trimethylbenzene	500	1,000	ND	2,457	4,914	ND	
95-63-6	1,2,4-Trimethylbenzene	500	1,000	ND	2,457	4,914	ND	
541-73-1	1,3-Dichlorobenzene	1,000	2,000	ND	6,009	12,019	ND	
100-44-7	Benzyl chloride	1,000	2,000	ND	5,175	10,351	ND	
106-46-7	1,4-Dichlorobenzene	1,000	2,000	ND	6,009	12,019	ND	
95-50-1	1,2-Dichlorobenzene	1,000	2,000	ND	6,009	12,019	ND	
120-82-1	1,2,4-Trichlorobenzene	2,500	5,000	ND	18,539	37,078	ND	
91-20-3	Naphthalene	500	1,000	ND	2,620	5,241	ND	
87-68-3	Hexachlorobutadiene	2,500	5,000	ND	26,653	53,307	ND	
						QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				89	70	130	

METHOD BLANK REPORT

TPH-Gasoline by GC/MS

Analytical Method:

TO-15

SDG:

Laboratory Number:

LABQC B03045

File:

B03045B

Date Sampled:

Time:

Description:

METHOD BLANK

Date Analyzed:

03/04/15

11:25

Sam_Type:

MB

Can Dilution Factor:

1.00

Time:

QC_Batch:

030415-MA1

Air Volume:

0.10 ml

	MDL	RL	Amount	MDL	RL	Amount	Flag
Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	
TPH-Gasoline	2,500	5,000	ND	10,557	21,115	ND	ND

TPH-Gasol Analytical Met	line by GC/MS hod: TO-15					Laborato	SDG: ry Number:	215096 01
File:	1509601B			Date	Sampled:	03/02/1	5 Time:	0:00
Description:	1500906-01				Analyzed:	03/04/18	5 Time:	12:45
Sam_Type:	SA			Can Dilutio	n Factor:	1.00	O	
QC_Batch:	030415-MA1			Ai	r Volume:	0.10	0 ml	
		MDL	RL	Amount	MDL	RL	Amount	Flag
	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	J
	TPH-Gasoline	2,500	5.000	4.009.254	10.557	21.115	16.930.972	

TPH-Gasol Analytical Met	line by GC/MS thod: TO-15					Laborator	SDG: y Number:	215096 02
File:	1509602B			Date	Sampled:	03/02/15	Time:	0:00
Description:	1500906-02			Date	Analyzed:	03/04/15	Time:	15:19
Sam_Type:	SA			Can Diluti	on Factor:	1.00		
QC_Batch:	030415-MA1			Α	ir Volume:	20.00	ml	
		MDL	RL	Amount	MDL	RL	Amount	Flag
	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Ü
	TPH-Gasoline	13	25	6.877	53	106	29.042	

TPH-Gasol Analytical Met	line by GC/MS hod: TO-15					Laborator	SDG: y Number:	215096 03
File:	1509603B			Date	Sampled:	03/02/15	Time:	0:00
Description:	1500906-03				Analyzed:	03/04/15	Time:	16:00
Sam_Type:	SA			Can Diluti	on Factor:	1.00		
QC_Batch:	030415-MA1			Α	ir Volume:	20.00	ml	
		MDL	RL	Amount	MDL	RL	Amount	Flag
	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Ü
	TPH-Gasoline	13	25	5,460	53	106	23.059	

TPH-Gasol Analytical Met	line by GC/MS hod: TO-15					Laborator	SDG: y Number:	215096 04
File:	1509604A			Date	Sampled:	03/02/15	Time:	0:00
Description:	1500906-04			Date	Analyzed:	03/04/15	Time:	14:40
Sam_Type:	SA			Can Diluti	on Factor:	1.00		
QC_Batch:	030415-MA1			Α	ir Volume:	0.10	ml	
		MDL	RL	Amount	MDL	RL	Amount	Flag
	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Ū
	TPH-Gasoline	13	25	ND	53	106	ND	ND

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 215100

Laboratory ID:

01

File Name: 1510001A.D **Description:** 1500918-01

Date Sampled: 03/03/15 Date Analyzed: 03/05/15

Time: Time: 00:00

1.00

16:15

Can Dilution Factor:

Can/Tube#: TBAG QC_Batch: 030515-MA1

Air Volume: 20.00 ml

*************************************	<u>, , , , , , , , , , , , , , , , , , , </u>	MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	3	5	ND	12	25	ND	
74-87-3	Chloromethane	3	5	ND	5	10	ND	
76-14-2	Freon 114	3	5	ND	18	35	ND	
75-01-4	Vinyl chloride	3	5	ND	6	13	ND	
106-99-0	1,3-Butadiene	3	5	ND	6	11	ND	
74-83-9	Bromomethane	3	5	ND	10	20	ND	
75-00-3	Chloroethane	3	5	ND	7	13	ND	
64-17-5	Ethanol	50	100	ND	94	188	ND	
75-69-4	Trichlorofluoromethane	25	50	ND	140	281	ND	
67-64-1	Acetone	25	50	ND	59	119	ND	
67-63-0	2-propanol	25	50	ND	61	123	ND	
75-65-0	t-Butanol	50	100	ND	151	303	ND	
75-35-4	1,1-Dichloroethene	25	50	ND	99	198	ND	
76-13-1	Freon 113	3	5	ND	19	38	ND	
75-09-2	Dichloromethane	5	10	ND	17	35	ND	
75-15-0	Carbon disulfide	25	50	ND	78	156	ND	
156-60-5	trans-1,2-Dichloroethene	3	5	ND	10	20	ND	
1634-04-4	Methyl tert butyl ether	3	5	ND	9	18	ND	
75-34-3	1,1-Dichloroethane	2	5	ND	10	20	ND	
637-92-3	Ethyl tert butyl ether	3	5	ND	10	21	ND	
108-05-4	Vinyl acetate	3	5	ND	9	18	ND	
78-93-3	2-Butanone	10	20	ND	29	59	ND	
108-20-3	Diisopropyl ether	10	20	ND	42	84	ND	
110-54-3	Hexane	13	25	ND	44	88	ND	
141-78-6	Ethyl acetate	25	50	ND	90	180	ND	
109-99-9	Tetrahydrofuran	3	5	ND	7	15	ND	
156-59-2	cis-1,2-Dichloroethene	3	5	ND	11	21	ND	
67-66-3	Chloroform	3	5	ND	12	24	ND	
71-55-6	1,1,1-Trichloroethane	3	5	ND	14	27	ND	
107-06-2	1,2-Dichloroethane	3	5	ND	10	20	ND	
110-82-7	Cyclohexane	3	5	ND	9	17	ND	
71-43-2	Benzene	5	10	ND	16	32	ND	
56-23-5	Carbon tetrachloride	3	5	ND	16	31	ND	
142-82-5	n-Heptane	25	50	ND	102	205	ND	
78-87-5	1,2-Dichloropropane	3	5	ND	12	23	ND	
123-91-1	1,4-Dioxane	5	10	ND	18	36	ND	
994-05-8	t-Amyl Methyl Ether	3	5	ND	18	36	ND	

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
79-01-6	Trichloroethene	1	3	ND	7	13	ND	
75-27-4	Bromodichloromethane	3	5	ND	17	33	ND	
108-10-1	4-Methyl-2-pentanone	25	50	ND	102	205	ND	
10061-01-5	cis-1,3-Dichloropropene	3	5	ND	11	23	ND	
108-88-3	Toluene	5	10	ND	19	38	ND	
10061-02-6	trans-1,3-Dichloropropene	3	5	ND	11	23	ND	
79-00-5	1,1,2-Trichloroethane	3	5	ND	14	27	ND	
591-78-6	2-Hexanone	25	50	ND	102	205	ND	
124-48-1	Dibromochloromethane	3	5	ND	21	43	ND	
106-93-4	1,2-Dibromoethane	3	5	ND	19	38	ND	
127-18-4	Tetrachloroethene	1	3	ND	8	17	ND	
108-90-7	Chlorobenzene	3	5	ND	12	23	ND	
100-41-4	Ethylbenzene	3	5	ND	11	22	ND	
1330-20-7	m,p-Xylenes	3	5	ND	11	22	ND	
100-42-5	Styrene	3	5	ND	11	21	ND	
75-25-2	Bromoform	3	5	ND	26	52	ND	
95-47-6	o-Xylene	3	5	ND	11	22	ND	
79-34-5	1,1,2,2-Tetrachloroethane	3	5	ND	17	34	ND	
622-96-8	4-Ethyltoluene	3	5	ND	12	25	ND	
108-67-8	1,3,5-Trimethylbenzene	3	5	ND	12	25	ND	
95-63-6	1,2,4-Trimethylbenzene	3	5	ND	12	25	ND	
541-73-1	1,3-Dichlorobenzene	5	10	ND	30	60	ND	
100-44-7	Benzyl chloride	5	10	ND	26	52	ND	
106-46-7	1,4-Dichlorobenzene	5	10	ND	30	60	ND	
95-50-1	1,2-Dichlorobenzene	5	10	ND	30	60	ND	
120-82-1	1,2,4-Trichlorobenzene	13	25	ND	93	185	ND	
91-20-3	Naphthalene	3	5	ND	13	26	ND	
87-68-3	Hexachlorobutadiene	13	25	ND	133	267	ND	
						QC	Limits	
	Surrogate Recovery	······································		······································	% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				117	70	130	

LNVIRONMENTAL Analytical Service, Inc.

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 215100

Time:

Time:

Laboratory ID:

02

00:00

16:58

File Name: 1510002A.D **Description:** 1500918-02 Can/Tube#: TBAG

QC_Batch: 030515-MA1

Date Sampled: 03/03/15 Date Analyzed:

Can Dilution Factor: 1.00

Air Volume: 20.00 ml

03/05/15

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	3	5	ND	12	25	ND	
74-87-3	Chloromethane	3	5	ND	5	10	ND	
76-14-2	Freon 114	3	5	ND	18	35	ND	
75-01-4	Vinyl chloride	3	5	ND	6	13	ND	
106-99-0	1,3-Butadiene	3	5	ND	6	11	ND	
74-83-9	Bromomethane	3	5	ND	10	20	ND	
75-00-3	Chloroethane	3	5	ND	7	13	ND	
64-17-5	Ethanol	50	100	ND	94	188	ND	
75-69-4	Trichlorofluoromethane	25	50	ND	140	281	ND	
67-64-1	Acetone	25	50	ND	59	119	ND	
67-63-0	2-propanol	25	50	ND	61	123	ND	
75-65-0	t-Butanol	50	100	ND	151	303	ND	
75-35-4	1,1-Dichloroethene	25	50	ND	99	198	ND	
76-13-1	Freon 113	3	5	ND	19	38	ND	
75-09-2	Dichloromethane	5	10	ND	17	35	ND	
75-15-0	Carbon disulfide	25	50	ND	78	156	ND	
156-60-5	trans-1,2-Dichloroethene	3	5	ND	10	20	ND	
1634-04-4	Methyl tert butyl ether	3	5	ND	9	18	ND	
75-34-3	1,1-Dichloroethane	2	5	ND	10	20	ND	
637-92-3	Ethyl tert butyl ether	3	5	ND	10	21	ND	
108-05-4	Vinyl acetate	3	5	ND	9	18	ND	
78-93-3	2-Butanone	10	20	ND	29	59	ND	
108-20-3	Diisopropyl ether	10	20	ND	42	84	ND	
110-54-3	Hexane	13	25	ND	44	88	ND	
141-78-6	Ethyl acetate	25	50	ND	90	180	ND	
109-99-9	Tetrahydrofuran	3	5	ND	7	15	ND	
156-59-2	cis-1,2-Dichloroethene	3	5	ND	11	21	ND	
67-66-3	Chloroform	3	5	ND	12	24	ND	
71-55-6	1,1,1-Trichloroethane	3	5	ND	14	27	ND	
107-06-2	1,2-Dichloroethane	3	5	ND	10	20	ND	
110-82-7	Cyclohexane	3	5	ND	9	17	ND	
71-43-2	Benzene	5	10	ND	16	32	ND	
56-23-5	Carbon tetrachloride	3	5	ND	16	31	ND	
142-82-5	n-Heptane	25	50	ND	102	205	ND	
78-87-5	1,2-Dichloropropane	3	5	ND	12	23	ND	
123-91-1	1,4-Dioxane	5	10	ND	18	36	ND	
994-05-8	t-Amyl Methyl Ether	3	5	ND	18	36	ND	

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
79-01-6	Trichloroethene	1	3	ND	7	13	ND	
75-27-4	Bromodichloromethane	3	5	ND	17	33	ND	
108-10-1	4-Methyl-2-pentanone	25	50	ND	102	205	ND	
10061-01-5	cis-1,3-Dichloropropene	3	5	ND	11	23	ND	
108-88-3	Toluene	5	10	ND	19	38	ND	
10061-02-6	trans-1,3-Dichloropropene	3	5	ND	11	23	ND	
79-00-5	1,1,2-Trichloroethane	3	5	ND	14	27	ND	
591-78-6	2-Hexanone	25	50	ND	102	205	ND	
124-48-1	Dibromochloromethane	3	5	ND	21	43	ND	
106-93-4	1,2-Dibromoethane	3	5	ND	19	38	ND	
127-18-4	Tetrachloroethene	1	3	ND	8	17	ND	
108-90-7	Chlorobenzene	3	5	ND	12	23	ND	
100-41-4	Ethylbenzene	3	5	ND	11	22	ND	
1330-20-7	m,p-Xylenes	3	5	ND	11	22	ND	
100-42-5	Styrene	3	5	ND	11	21	ND	
75-25-2	Bromoform	3	5	ND	26	52	ND	
95-47-6	o-Xylene	3	5	ND	11	22	ND	
79-34-5	1,1,2,2-Tetrachloroethane	3	5	ND	17	34	ND	
622-96-8	4-Ethyltoluene	3	5	ND	12	25	ND	
108-67-8	1,3,5-Trimethylbenzene	3	5	ND	12	25	ND	
95-63-6	1,2,4-Trimethylbenzene	3	5	ND	12	25	ND	
541-73-1	1,3-Dichlorobenzene	5	10	ND	30	60	ND	
100-44-7	Benzyl chloride	5	10	ND	26	52	ND	
106-46-7	1,4-Dichlorobenzene	5	10	ND	30	60	ND	
95-50-1	1,2-Dichlorobenzene	5	10	ND	30	60	ND	
120-82-1	1,2,4-Trichlorobenzene	13	25	ND	93	185	ND	
91-20-3	Naphthalene	3	5	ND	13	26	ND	
87-68-3	Hexachlorobutadiene	13	25	ND	133	267	ND	
	the standard and a last the same and the sam					QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				96	70	130	

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 215100

Laboratory ID:

File Name: 1510003B.D **Description:** 1500918-03

Date Sampled: 03/03/15 Date Analyzed:

Air Volume:

03/05/15

Time: 00:00 Time: 19:39

Can Dilution Factor: 1.00

0.10 ml

Can/Tube#: TBAG QC_Batch: 030515-MA1

CAS# Compound PPBV PPBV PPBV UG/M3 UG/M3 UG/M3 Flag 75-71-8 Dichlorodifluoromethane 503 1,006 ND 2,486 4,972 ND 74-87-3 Chloromethane 503 1,006 ND 1,038 2,077 ND 75-01-4 Vinyl chloride 503 1,006 ND 1,285 2,570 ND 76-01-4 Vinyl chloride 503 1,006 ND 1,285 2,570 ND 76-01-3 J.3-Butadiene 503 1,006 ND 1,951 3,903 ND 75-00-3 Chloroethane 503 1,006 ND 1,951 3,903 ND 67-41-7 Acetone 5,000 10,000 ND 18,845 37,891 ND 75-65-0 I-Butanol 10,000 20,000 ND 13,252 29,752 ND 75-65-0 I-Butanol 10,000 20,000 ND 3,812 ND </th <th></th> <th></th> <th>MDL</th> <th>RL</th> <th>Amount</th> <th>MDL</th> <th>RL</th> <th>Amount</th> <th></th>			MDL	RL	Amount	MDL	RL	Amount	
74-87-3 Chloromethane 503 1,006 ND 1,038 2,077 ND 76-14-2 Freon 114 503 1,006 ND 3,514 7,028 ND 75-01-4 Viryl chloride 503 1,006 ND 1,285 2,270 ND 106-99-0 1,3-Butadiene 503 1,006 ND 1,112 2,225 ND 74-83-9 Bromomethane 503 1,006 ND 1,326 2,653 ND 64-17-5 Ethanol 10,000 20,000 ND 18,845 37,691 ND 75-69-4 Trichlorofluoromethane 5,000 10,000 ND 11,875 23,751 ND 67-63-0 2-propanol 5,000 10,000 ND 11,875 23,751 ND 75-55-0 t-Butanol 10,000 20,000 ND 30,812 ND 75-65-0 t-Butanol 10,000 ND 19,806 39,612 ND 76-1	CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3		Flag
76-14-2 Freon 114 503 1,006 ND 3,514 7,028 ND 75-01-4 Vinyl chloride 503 1,006 ND 1,285 2,570 ND 106-99-0 1,3-Butadiene 503 1,006 ND 1,112 2,225 ND 74-83-9 Bromomethane 503 1,006 ND 1,951 3,903 ND 75-00-3 Chloroethane 503 1,006 ND 1,952 2,653 ND 64-17-5 Ethanol 10,000 20,000 ND 18,845 37,691 ND 67-68-4 Trichloroffluoromethane 5,000 10,000 ND 28,084 56,168 ND 75-35-4 A.1-Dichloroethene 5,000 10,000 ND 12,284 24,569 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 13,800 7,661 ND 75-03-2 Dichloromethane 1,000 2,000 ND 3,811 N	75-71-8	Dichlorodifluoromethane	503	1,006	ND	2,486	4,972	ND	
75-01-4 Vinyl chloride 503 1,006 ND 1,285 2,570 ND 106-99-0 1,3-Butadiene 503 1,006 ND 1,112 2,225 ND 74-83-9 Bromomethane 503 1,006 ND 1,951 3,903 ND 75-00-3 Chloroethane 503 1,006 ND 1,326 2,653 ND 64-17-5 Ethanol 10,000 20,000 ND 18,845 37,691 ND 75-69-4 Trichlorofluoromethane 5,000 10,000 ND 18,845 37,691 ND 67-63-0 2-propanol 5,000 10,000 ND 11,875 23,751 ND 67-63-0 2-propanol 5,000 10,000 ND 19,806 39,612 ND 75-35-4 1,1-Dichloroethane 5,000 10,000 ND 19,806 39,612 ND 76-99-2 Dichloromethane 1,000 ND 3,471 6,941 ND<	74-87-3	Chloromethane	503		ND	1,038			
106-99-0 1,3-Butadiene 503 1,006 ND 1,112 2,225 ND 74-83-9 Bromomethane 503 1,006 ND 1,951 3,903 ND 75-00-3 Chloroethane 503 1,006 ND 1,326 2,653 ND 64-17-5 Ethanol 10,000 20,000 ND 18,845 37,691 ND 75-69-4 Trichlorofluoromethane 5,000 10,000 ND 28,084 56,168 ND 67-63-0 2-propanol 5,000 10,000 ND 11,875 23,751 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 19,806 39,612 ND 76-13-1 Freon 113 500 10,000 ND 3,830 7,661 ND 75-15-0 Carbon disulfide 5,000 10,000 ND 15,555 31,109 ND 168-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,801	76-14-2	Freon 114	503	1,006	ND	3,514	•		
74-83-9 Bromomethane 503 1,006 ND 1,951 3,903 ND 75-00-3 Chloroethane 503 1,006 ND 1,326 2,653 ND 64-17-5 Ethanol 10,000 20,000 ND 18,845 37,691 ND 75-69-4 Trichlorofluoromethane 5,000 10,000 ND 28,084 56,168 ND 67-64-1 Acetone 5,000 10,000 ND 11,875 23,751 ND 67-63-0 2-propanol 5,000 10,000 ND 12,284 24,569 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 30,292 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 3,830 7,661 ND 75-35-3 1,1-Dichloroethane 1,000 ND 3,471 6,941 ND 75-15-0 Carbon disulfide 5,000 10,000 ND 1,555 31,109 ND </td <td>75-01-4</td> <td>Vinyl chloride</td> <td>503</td> <td>1,006</td> <td>ND</td> <td>1,285</td> <td>2,570</td> <td>ND</td> <td></td>	75-01-4	Vinyl chloride	503	1,006	ND	1,285	2,570	ND	
75-00-3 Chloroethane 503 1,006 ND 1,326 2,653 ND 64-17-5 Ethanol 10,000 20,000 ND 18,845 37,691 ND 75-69-4 Trichlorofluoromethane 5,000 10,000 ND 28,084 56,168 ND 67-63-0 2-propanol 5,000 10,000 ND 11,284 24,569 ND 75-65-0 t-Butanol 10,000 20,000 ND 30,292 60,583 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 38,303 7,661 ND 75-09-2 Dichloromethane 1,000 2,000 ND 19,806 39,612 ND 75-15-0 Carbon disulfide 5,000 10,000 ND 15,555 31,109 ND 156-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,831 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND	106-99-0	1,3-Butadiene	503	1,006	ND	1,112	2,225	ND	
64-17-5 Ethanol 10,000 20,000 ND 18,845 37,691 ND 75-69-4 Trichlorofluoromethane 5,000 10,000 ND 28,084 56,168 ND 67-64-1 Acetone 5,000 10,000 ND 11,875 23,751 ND 67-63-0 2-propanol 5,000 10,000 ND 12,284 24,569 ND 75-65-0 t-Butanol 10,000 20,000 ND 30,292 60,583 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 19,806 39,612 ND 76-13-1 Freon 113 500 1,000 ND 3,830 7,661 ND 75-09-2 Dichloromethane 1,000 ND 15,555 31,109 ND 158-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,981 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 2,018 4,037	74-83-9	Bromomethane	503	1,006	ND	1,951	3,903	ND	
75-69-4 Trichlorofluoromethane 5,000 10,000 ND 28,084 56,168 ND 67-64-1 Acetone 5,000 10,000 ND 11,875 23,751 ND 67-63-0 2-propanol 5,000 10,000 ND 12,284 24,569 ND 75-65-0 1-Butanol 10,000 20,000 ND 30,292 60,583 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 19,806 39,612 ND 75-09-2 Dichloromethane 1,000 2,000 ND 3,830 7,661 ND 75-15-0 Carbon disulfide 5,000 10,000 ND 15,555 31,109 ND 156-60-5 trans-1,2-Dichloroethane 500 1,000 ND 1,801 3,601 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 163-92-3 Eityl tert butyl ether 500 1,000 ND <td>75-00-3</td> <td>Chloroethane</td> <td>503</td> <td>1,006</td> <td>ND</td> <td>1,326</td> <td>2,653</td> <td>ND</td> <td></td>	75-00-3	Chloroethane	503	1,006	ND	1,326	2,653	ND	
67-64-1 Acetone 5,000 10,000 ND 11,875 23,751 ND 67-63-0 2-propanol 5,000 10,000 ND 12,284 24,569 ND 75-65-0 t-Butanol 10,000 20,000 ND 30,292 60,583 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 19,806 39,612 ND 76-13-1 Freon 113 500 1,000 ND 3,830 7,661 ND 75-09-2 Dichloromethane 1,000 2,000 ND 15,555 31,109 ND 156-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,981 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 2,089 4,178 ND 108-05-4 Vinyl acetate 500 1,000 ND 5,895 <td>64-17-5</td> <td>Ethanol</td> <td>10,000</td> <td>20,000</td> <td>ND</td> <td>18,845</td> <td>37,691</td> <td>ND</td> <td></td>	64-17-5	Ethanol	10,000	20,000	ND	18,845	37,691	ND	
67-63-0 2-propanol 5,000 10,000 ND 12,284 24,569 ND 75-65-0 1-Butanol 10,000 20,000 ND 30,292 60,583 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 19,806 39,612 ND 76-13-1 Freon 113 500 1,000 ND 3,830 7,661 ND 75-09-2 Dichloromethane 1,000 2,000 ND 15,555 31,109 ND 156-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,881 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 1,760 3,520 ND 108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 78-93-3 2-Butanone 2,000 4,000 ND 8,356 <td>75-69-4</td> <td>Trichlorofluoromethane</td> <td>5,000</td> <td>10,000</td> <td>ND</td> <td>28,084</td> <td>56,168</td> <td>ND</td> <td></td>	75-69-4	Trichlorofluoromethane	5,000	10,000	ND	28,084	56,168	ND	
75-65-0 t-Butanol 10,000 20,000 ND 30,292 60,583 ND 75-35-4 1,1-Dichloroethene 5,000 10,000 ND 19,806 39,612 ND 76-13-1 Freon 113 500 1,000 ND 3,830 7,661 ND 75-09-2 Dichloromethane 1,000 2,000 ND 3,471 6,941 ND 75-15-0 Carbon disulfide 5,000 10,000 ND 15,555 31,109 ND 156-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,981 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 2,018 4,037 ND 108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 78-93-3 2-Butanone 2,000 4,000 ND 5,89	67-64-1	Acetone	5,000	10,000	ND	11,875	23,751	ND	
75-35-4 1,1-Dichloroethene 5,000 10,000 ND 19,806 39,612 ND 76-13-1 Freon 113 500 1,000 ND 3,830 7,661 ND 75-09-2 Dichloromethane 1,000 2,000 ND 3,471 6,941 ND 75-15-0 Carbon disulfide 5,000 10,000 ND 1,555 31,109 ND 163-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,981 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 75-34-3 1,1-Dichloroethane 499 997 ND 2,018 4,037 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 1,760 3,520 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 5,895 11,790 ND 110-54-3 Hexane 2,500 5,000 12,047	67-63-0	2-propanol	5,000	10,000	ND	12,284	24,569	ND	
76-13-1 Freon 113 500 1,000 ND 3,830 7,661 ND 75-09-2 Dichloromethane 1,000 2,000 ND 3,471 6,941 ND 75-15-0 Carbon disulfide 5,000 10,000 ND 15,555 31,109 ND 156-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,981 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 75-34-3 1,1-Dichloroethane 499 997 ND 2,018 4,037 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 2,089 4,178 ND 108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,81	75-65-0	t-Butanol	10,000	20,000	ND	30,292	60,583	ND	
75-09-2 Dichloromethane 1,000 2,000 ND 3,471 6,941 ND 75-15-0 Carbon disulfide 5,000 10,000 ND 15,555 31,109 ND 156-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,981 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 75-34-3 1,1-Dichloroethane 499 997 ND 2,018 4,037 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 1,760 3,520 ND 108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 141-78-6 Ethyl acetate 5,000 10,000 ND	75-35-4	1,1-Dichloroethene	5,000	10,000	ND	19,806	39,612	ND	
75-15-0 Carbon disulfide 5,000 10,000 ND 15,555 31,109 ND 156-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,981 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 75-34-3 1,1-Dichloroethane 499 997 ND 2,018 4,037 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 2,089 4,178 ND 108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 78-93-3 2-Butanone 2,000 4,000 ND 5,895 11,790 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 141-78-6 Ethyl acetate 5,000 10,000 ND	76-13-1	Freon 113	500	1,000	ND	3,830	7,661	ND	
156-60-5 trans-1,2-Dichloroethene 500 1,000 ND 1,981 3,961 ND 1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 75-34-3 1,1-Dichloroethane 499 997 ND 2,018 4,037 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 2,089 4,178 ND 108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 78-93-3 2-Butanone 2,000 4,000 ND 5,895 11,790 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 141-78-6 Ethyl acetate 5,000 10,000 ND 148,007 36,015 ND 156-59-2 cis-1,2-Dichloroethene 537 1,074 ND	75-09-2	Dichloromethane	1,000	2,000	ND	3,471	6,941	ND	
1634-04-4 Methyl tert butyl ether 500 1,000 ND 1,801 3,601 ND 75-34-3 1,1-Dichloroethane 499 997 ND 2,018 4,037 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 2,089 4,178 ND 108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 78-93-3 2-Butanone 2,000 4,000 ND 5,895 11,790 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 411-78-6 Ethyl acetate 5,000 10,000 ND 18,007 36,015 ND 109-99-9 Tetrahydrofuran 503 1,006 ND 1,483 2,965 ND 67-66-3 Chloroform 502 1,003 ND 2,127	75-15-0	Carbon disulfide	5,000	10,000	ND	15,555	31,109	ND	
75-34-3 1,1-Dichloroethane 499 997 ND 2,018 4,037 ND 637-92-3 Ethyl tert butyl ether 500 1,000 ND 2,089 4,178 ND 108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 78-93-3 2-Butanone 2,000 4,000 ND 5,895 11,790 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 141-78-6 Ethyl acetate 5,000 10,000 ND 18,007 36,015 ND 109-99-9 Tetrahydrofuran 503 1,006 ND 1,483 2,965 ND 156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND 67-66-3 Chloroform 502 1,003 ND 2,448	156-60-5	trans-1,2-Dichloroethene	500	1,000	ND	1,981	3,961	ND	
637-92-3 Ethyl tert butyl ether 500 1,000 ND 2,089 4,178 ND 108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 78-93-3 2-Butanone 2,000 4,000 ND 5,895 11,790 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 141-78-6 Ethyl acetate 5,000 10,000 ND 18,007 36,015 ND 109-99-9 Tetrahydrofuran 503 1,006 ND 1,483 2,965 ND 156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND 67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024	1634-04-4	Methyl tert butyl ether	500	1,000	ND	1,801	3,601	ND	
108-05-4 Vinyl acetate 500 1,000 ND 1,760 3,520 ND 78-93-3 2-Butanone 2,000 4,000 ND 5,895 11,790 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 141-78-6 Ethyl acetate 5,000 10,000 ND 18,007 36,015 ND 109-99-9 Tetrahydrofuran 503 1,006 ND 1,483 2,965 ND 156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND 67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND 71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024	75-34-3	1,1-Dichloroethane	499	997	ND	2,018	4,037	ND	
78-93-3 2-Butanone 2,000 4,000 ND 5,895 11,790 ND 108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 141-78-6 Ethyl acetate 5,000 10,000 ND 18,007 36,015 ND 109-99-9 Tetrahydrofuran 503 1,006 ND 1,483 2,965 ND 156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND 67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND 71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND 110-82-7 Cyclohexane 500 1,000 2,192 3,193	637-92-3	Ethyl tert butyl ether	500	1,000	ND	2,089	4,178	ND	
108-20-3 Diisopropyl ether 2,000 4,000 ND 8,356 16,711 ND 110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 141-78-6 Ethyl acetate 5,000 10,000 ND 18,007 36,015 ND 109-99-9 Tetrahydrofuran 503 1,006 ND 1,483 2,965 ND 156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND 67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND 71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND 110-82-7 Cyclohexane 500 1,000 4,284 1,721 3,442 14,745 71-43-2 Benzene 1,000 2,000 2,192 3,193	108-05-4	Vinyl acetate	500	1,000	ND		3,520	ND	
110-54-3 Hexane 2,500 5,000 12,047 8,810 17,619 42,451 141-78-6 Ethyl acetate 5,000 10,000 ND 18,007 36,015 ND 109-99-9 Tetrahydrofuran 503 1,006 ND 1,483 2,965 ND 156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND 67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND 71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND 110-82-7 Cyclohexane 500 1,000 4,284 1,721 3,442 14,745 71-43-2 Benzene 1,000 2,000 2,192 3,193 6,385 6,999 56-23-5 Carbon tetrachloride 500 1,000 ND 20,481 </td <td>78-93-3</td> <td>2-Butanone</td> <td>2,000</td> <td>4,000</td> <td>ND</td> <td>5,895</td> <td>11,790</td> <td>ND</td> <td></td>	78-93-3	2-Butanone	2,000	4,000	ND	5,895	11,790	ND	
141-78-6 Ethyl acetate 5,000 10,000 ND 18,007 36,015 ND 109-99-9 Tetrahydrofuran 503 1,006 ND 1,483 2,965 ND 156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND 67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND 71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND 110-82-7 Cyclohexane 500 1,000 4,284 1,721 3,442 14,745 71-43-2 Benzene 1,000 2,000 2,192 3,193 6,385 6,999 56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND 142-82-5 n-Heptane 5,000 10,000 ND 2,310	108-20-3	Diisopropyl ether	2,000	4,000	ND	8,356	16,711	ND	
109-99-9 Tetrahydrofuran 503 1,006 ND 1,483 2,965 ND 156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND 67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND 71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND 110-82-7 Cyclohexane 500 1,000 4,284 1,721 3,442 14,745 71-43-2 Benzene 1,000 2,000 2,192 3,193 6,385 6,999 56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND 142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND 78-87-5 1,2-Dichloropropane 500 1,000 ND 3,601	110-54-3	Hexane	2,500	5,000	12,047	8,810	17,619	42,451	
156-59-2 cis-1,2-Dichloroethene 537 1,074 ND 2,127 4,254 ND 67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND 71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND 110-82-7 Cyclohexane 500 1,000 4,284 1,721 3,442 14,745 71-43-2 Benzene 1,000 2,000 2,192 3,193 6,385 6,999 56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND 142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND 78-87-5 1,2-Dichloropropane 500 1,000 ND 3,601 7,203 ND 123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601	141-78-6	Ethyl acetate	5,000	10,000	ND	18,007	36,015	ND	
67-66-3 Chloroform 502 1,003 ND 2,448 4,896 ND 71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND 110-82-7 Cyclohexane 500 1,000 4,284 1,721 3,442 14,745 71-43-2 Benzene 1,000 2,000 2,192 3,193 6,385 6,999 56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND 142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND 78-87-5 1,2-Dichloropropane 500 1,000 ND 2,310 4,619 ND 123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601 7,203 ND	109-99-9	Tetrahydrofuran	503	1,006	ND	1,483	2,965	ND	
71-55-6 1,1,1-Trichloroethane 500 1,000 ND 2,727 5,453 ND 107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND 110-82-7 Cyclohexane 500 1,000 4,284 1,721 3,442 14,745 71-43-2 Benzene 1,000 2,000 2,192 3,193 6,385 6,999 56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND 142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND 78-87-5 1,2-Dichloropropane 500 1,000 ND 2,310 4,619 ND 123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601 7,203 ND	156-59-2	cis-1,2-Dichloroethene	537	1,074	ND	2,127	4,254	ND	
107-06-2 1,2-Dichloroethane 500 1,000 ND 2,024 4,047 ND 110-82-7 Cyclohexane 500 1,000 4,284 1,721 3,442 14,745 71-43-2 Benzene 1,000 2,000 2,192 3,193 6,385 6,999 56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND 142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND 78-87-5 1,2-Dichloropropane 500 1,000 ND 2,310 4,619 ND 123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601 7,203 ND	67-66-3	Chloroform	502	1,003	ND	2,448	4,896	ND	
110-82-7 Cyclohexane 500 1,000 4,284 1,721 3,442 14,745 71-43-2 Benzene 1,000 2,000 2,192 3,193 6,385 6,999 56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND 142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND 78-87-5 1,2-Dichloropropane 500 1,000 ND 2,310 4,619 ND 123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601 7,203 ND	71-55-6	1,1,1-Trichloroethane	500	1,000	ND	2,727	5,453	ND	
71-43-2 Benzene 1,000 2,000 2,192 3,193 6,385 6,999 56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND 142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND 78-87-5 1,2-Dichloropropane 500 1,000 ND 2,310 4,619 ND 123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601 7,203 ND	107-06-2	1,2-Dichloroethane	500	1,000	ND		4,047	ND	
56-23-5 Carbon tetrachloride 500 1,000 ND 3,144 6,287 ND 142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND 78-87-5 1,2-Dichloropropane 500 1,000 ND 2,310 4,619 ND 123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601 7,203 ND	110-82-7	Cyclohexane	500	1,000	4,284	1,721	3,442	14,745	
142-82-5 n-Heptane 5,000 10,000 ND 20,481 40,961 ND 78-87-5 1,2-Dichloropropane 500 1,000 ND 2,310 4,619 ND 123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601 7,203 ND	71-43-2	Benzene	1,000	2,000	2,192	3,193	6,385	6,999	
78-87-5 1,2-Dichloropropane 500 1,000 ND 2,310 4,619 ND 123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601 7,203 ND	56-23-5	Carbon tetrachloride	500	1,000	ND	3,144	6,287		
123-91-1 1,4-Dioxane 1,000 2,000 ND 3,601 7,203 ND	142-82-5	n-Heptane	5,000	10,000	ND	20,481	40,961		
	78-87-5	1,2-Dichloropropane	500	1,000	ND	2,310	4,619	ND	
994-05-8 t-Amyl Methyl Ether 500 1,000 ND 3,552 7,105 ND	123-91-1	1,4-Dioxane	1,000	2,000	ND	3,601	7,203	ND	
	994-05-8	t-Amyl Methyl Ether	500	1,000	ND	3,552	7,105	ND	

	· · · · · · · · · · · · · · · · · · ·	MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
79-01-6	Trichloroethene	250	500	ND	1,343	2,686	ND	
75-27-4	Bromodichloromethane	500	1,000	ND	3,348	6,696	ND	
108-10-1	4-Methyl-2-pentanone	5,000	10,000	ND	20,481	40,961	ND	
10061-01-5	cis-1,3-Dichloropropene	500	1,000	ND	2,269	4,538	ND	
108-88-3	Toluene	1,000	2,000	ND	3,765	7,530	ND	
10061-02-6	trans-1,3-Dichloropropene	500	1,000	ND	2,269	4,538	ND	
79-00-5	1,1,2-Trichloroethane	500	1,000	ND	2,727	5,453	ND	
591-78-6	2-Hexanone	5,000	10,000	ND	20,481	40,961	ND	
124-48-1	Dibromochloromethane	500	1,000	ND	4,258	8,515	ND	
106-93-4	1,2-Dibromoethane	500	1,000	ND	3,841	7,681	ND	
127-18-4	Tetrachloroethene	250	500	ND	1,694	3,389	ND	
108-90-7	Chlorobenzene	500	1,000	ND	2,302	4,603	ND	
100-41-4	Ethylbenzene	500	1,000	ND	2,171	4,341	ND	
1330-20-7	m,p-Xylenes	500	1,000	ND	2,171	4,341	ND	
100-42-5	Styrene	500	1,000	ND	2,130	4,260	ND	
75-25-2	Bromoform	500	1,000	ND	5,165	10,330	ND	
95-47-6	o-Xylene	500	1,000	ND	2,171	4,341	ND	
79-34-5	1,1,2,2-Tetrachloroethane	500	1,000	ND	3,430	6,860	ND	
622-96-8	4-Ethyltoluene	500	1,000	ND	2,457	4,914	ND	
108-67-8	1,3,5-Trimethylbenzene	500	1,000	ND	2,457	4,914	ND	
95-63-6	1,2,4-Trimethylbenzene	500	1,000	ND	2,457	4,914	ND	
541-73-1	1,3-Dichlorobenzene	1,000	2,000	ND	6,009	12,019	ND	
100-44-7	Benzyl chloride	1,000	2,000	ND	5,175	10,351	ND	
106-46-7	1,4-Dichlorobenzene	1,000	2,000	ND	6,009	12,019	ND	
95-50-1	1,2-Dichlorobenzene	1,000	2,000	ND	6,009	12,019	ND	
120-82-1	1,2,4-Trichlorobenzene	2,500	5,000	ND	18,539	37,078	ND	
91-20-3	Naphthalene	500	1,000	ND	2,620	5,241	ND	
87-68-3	Hexachlorobutadiene	2,500	5,000	ND	26,653	53,307	ND	
					***************************************	QC	Limits	
FW.,	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				93	70	130	

METHOD BLANK REPORT

TPH-Gasoline by GC/MS

Analytical Method:

TO-15

SDG:

LABQC

Laboratory Number:

B03055

File:

B03055C

METHOD BLANK

Date Sampled:

Time:

Time:

Description: Sam_Type:

MB

Date Analyzed:

03/05/15

14:14

Can Dilution Factor:

1.00

0.10 ml

QC_Batch:

030515-MA1

Air Volume:

Compound	MDL PPBV	RL PPBV	Amount PPBV	MDL UG/M3	RL UG/M3	Amount UG/M3	Flag
TPH-Gasoline	13	25	ND	53	106	ND	ND

TPH-Gasoline by GC/MS Analytical Method: TO-15						Laboratory	SDG: / Number:	215100 01
File:	1510001A			Date	Sampled:	03/03/15	Time:	0:00
Description:	1500918-01			Date	Analyzed:	03/05/15	Time:	16:15
Sam_Type:	SA			Can Dilutio	on Factor:	1.00		
QC_Batch:	030515-MA1			Ai	r Volume:	20.00	ml	
		MDL	RL	Amount	MDL	RL	Amount	Flag
	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	_
	TPH-Gasoline	13	25	723	53	106	3,051	

TPH-Gaso	line by GC/MS hod: TO-15					Laborator	SDG: y Number:	215100 02
File:	1510002A			Date	Sampled:	03/03/15	Time:	0:00
Description:	1500918-02			Date	Analyzed:	03/05/15	Time:	16:58
Sam_Type:	SA			Can Dilutio	on Factor:	1.00		
QC_Batch:	030515-MA1			Ai	r Volume:	20.00	ml	
·	· · · · · · · · · · · · · · · · · · ·	MDL	RL	Amount	MDL	RL	Amount	Flag
	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Ů
	TPH-Gasoline	13	25	9,425	53	106	39.801	

TPH-Gasol Analytical Met	line by GC/MS hod: TO-15					Laborator	SDG: ry Number:	215100 03
File:	1510003B			Date	Sampled:	03/03/15	Time:	0:00
Description:	1500918-03				Analyzed:	03/05/15	Time:	19:39
Sam_Type:	SA			Can Dilutio	on Factor:	1.00)	
QC_Batch:	030515-MA1			Ai	r Volume:	0.10) ml	
		MDL	RL	Amount	MDL	RL	Amount	Flag
	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	J
	TPH-Gasoline	2,500	5,000	263,684	10,557	21,115	1,113,530	

Appendix H Analytical Results

Oilfield Environmental and Compliance, INC.

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Guisti 20-2, Gou 32-8/32-9 **Reported:**Richardson TX, 75080 Project Manager: David Ranum 14-Aug-15 16:15

TB 040 A 1503374-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
· ·		Limit				•	-		

Oilfield Environmental and Compliance

acetone	ND	33	ppbv	16.7	B5H0193	07-Aug-15	07-Aug-15	TO-15 mod
Senzene	8.4	8.4	"	"	"	"	"	"
enzyl chloride	ND	8.4	"	"	"	"	"	"
romodichloromethane	ND	8.4	"	"	"	"	"	"
romoform	ND	8.4	"	"	"	"	"	"
romomethane	ND	8.4	"	"	"	"	"	"
,3-Butadiene	ND	8.4	"	"	"	"	"	"
Carbon disulfide	ND	8.4	"	"	"	"	"	"
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"
Chlorobenzene	ND	8.4	"	"	"	"	"	"
Chloroethane	ND	8.4	"	"	"	"	"	"
Chloroform	ND	8.4	"	"	"	"	"	"
Chloromethane	ND	8.4	"	"	"	"	"	"
Cyclohexane	50	8.4	"	"	"	"	"	"
Dibromochloromethane	ND	8.4	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"
,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
Pichlorodifluoromethane	ND	8.4	"	"	"	"	"	"
,1-Dichloroethane	ND	8.4	"	"	"	"	"	"
,2-Dichloroethane	ND	8.4	"	"	"	"	"	"
,1-Dichloroethene	ND	8.4	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
,2-Dichloropropane	ND	8.4	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"
,4-Dioxane	ND	8.4	"	"	"	"	"	"
thanol	ND	33	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Guisti 20-2, Gou 32-8/32-9 **Reported:**Richardson TX, 75080 Project Manager: David Ranum 14-Aug-15 16:15

TB 040 A 1503374-01 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	1 . 9	Units	Dilution	Batch			Method	Notes
--	---------	--------	-------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Ethyl Acetate	ND	8.4	ppbv	16.7	B5H0193	07-Aug-15	07-Aug-15	TO-15 mod.	
Ethylbenzene	ND	8.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"	
Heptane	75	8.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	190	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	
Isopropyl alcohol	ND	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	9.0	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	ND	8.4	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	7300	3300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Guisti 20-2, Gou 32-8/32-9 **Reported:**Richardson TX, 75080 Project Manager: David Ranum 14-Aug-15 16:15

TB 041 A 1503374-03 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	1 . 9	Units	Dilution	Batch			Method	Notes
--	---------	--------	-------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Acetone	ND	33	ppbv	16.7	B5H0193	07-Aug-15	07-Aug-15	TO-15 mod
Benzene	ND	8.4	"	"	"	"	"	"
Benzyl chloride	ND	8.4	"	"	"	"	"	"
Bromodichloromethane	ND	8.4	"	"	"	"	"	"
Bromoform	ND	8.4	"	"	"	"	"	"
Bromomethane	ND	8.4	"	"	"	"	"	"
1,3-Butadiene	ND	8.4	"	"	"	"	"	"
Carbon disulfide	ND	8.4	"	"	"	"	"	"
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"
Chlorobenzene	ND	8.4	"	"	"	"	"	"
Chloroethane	ND	8.4	"	"	"	"	"	"
Chloroform	ND	8.4	"	"	"	"	"	"
Chloromethane	ND	8.4	"	"	"	"	"	"
Cyclohexane	ND	8.4	"	"	"	"	"	"
Dibromochloromethane	ND	8.4	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"
1,1-Dichloroethane	ND	8.4	"	"	"	"	"	"
1,2-Dichloroethane	ND	8.4	"	"	"	"	"	"
1,1-Dichloroethene	ND	8.4	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
1,2-Dichloropropane	ND	8.4	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"
1,4-Dioxane	ND	8.4	"	"	"	"	"	"
Ethanol	ND	33	"	"	"	"	"	"
Ethyl Acetate	ND	8.4	"	"	"	"	"	"
Ethylbenzene	ND	8.4	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Guisti 20-2, Gou 32-8/32-9 **Reported:**Richardson TX, 75080 Project Manager: David Ranum 14-Aug-15 16:15

TB 041 A 1503374-03 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	1 . 9	Units	Dilution	Batch			Method	Notes
--	---------	--------	-------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15								
Heptane	ND	8.4	ppbv	16.7	B5H0193	07-Aug-15	07-Aug-15	TO-15 mod.	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	ND	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	
Isopropyl alcohol	ND	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	ND	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	14	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	ND	8.4	"	"	"	"	"	"	

Oilfield Environmental and Compliance

TPH Gasoline (C4-C12)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

ND

3300

www.oecusa.com

Appendix H **Analytical Results**

Oilfield Environmental and Compliance, INC.

Sage Environmental Consulting Project: CARB

Project Number: Sanborn #4, 19-8, 19-10, 30-10, 25-17, 30-6 720 West Arapaho Road Reported: Richardson TX, 75080 Project Manager: David Ranum 17-Aug-15 15:13

TB 042 A 1503396-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
· ·		Limit					-		

Oilfield Environmental and Compliance

Acetone	34	33	ppbv	16.7	B5H0193	08-Aug-15	08-Aug-15	TO-15 mod
Benzene	130	8.4	"	"	"	"	"	"
Benzyl chloride	ND	8.4	"	"	"	"	"	"
Bromodichloromethane	ND	8.4	"	"	"	"	"	"
Bromoform	ND	8.4	"	"	"	"	"	"
Bromomethane	ND	8.4	"	"	"	"	"	"
1,3-Butadiene	ND	8.4	"	"	"	"	"	"
Carbon disulfide	ND	8.4	"	"	"	"	"	"
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"
Chlorobenzene	ND	8.4	"	"	"	"	"	"
Chloroethane	ND	8.4	"	"	"	"	"	"
Chloroform	ND	8.4	"	"	"	"	"	"
Chloromethane	ND	8.4	"	"	"	"	"	"
Cyclohexane	41	8.4	"	"	"	"	"	"
Dibromochloromethane	ND	8.4	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"
1,1-Dichloroethane	ND	8.4	"	"	"	"	"	"
1,2-Dichloroethane	ND	8.4	"	"	"	"	"	"
1,1-Dichloroethene	ND	8.4	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
1,2-Dichloropropane	ND	8.4	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"
1,4-Dioxane	ND	8.4	"	"	"	"	"	"
Ethanol	68	33	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376 Page 147 of 223

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: Sanborn #4, 19-8, 19-10, 30-10, 25-17, 30-6 **Reported:**Richardson TX, 75080 Project Manager: David Ranum 17-Aug-15 15:13

TB 042 A 1503396-01 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Ethyl Acetate	ND	8.4	ppbv	16.7	B5H0193	08-Aug-15	08-Aug-15	TO-15 mod.	
Ethylbenzene	17	8.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"	
Heptane	33	8.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	51	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	
Isopropyl alcohol	10	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	10	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	76	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	18	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	90	8.4	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	3900	3300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: Sanborn #4, 19-8, 19-10, 30-10, 25-17, 30-6 Reported:
Richardson TX, 75080 Project Manager: David Ranum 17-Aug-15 15:13

TB 043 A 1503396-03 (Air)

Analyte Result Repo	orting Units	Dilution Batch	Prepared	Analyzed	Method	Notes
---------------------	--------------	----------------	----------	----------	--------	-------

Oilfield Environmental and Compliance

Volatile Organic Compour	ds by EPA Method TO-15								
Acetone	43	33	ppbv	16.7	B5H0193	08-Aug-15	08-Aug-15	TO-15 mod.	
Benzene	ND	8.4	"	"	"	"	"	"	

Benzyl chloride	ND	8.4	"	"	"	"	"	"	
Bromodichloromethane	ND	8.4	"	"	"	"	"	"	
Bromoform	ND	8.4	"	"	"	"	"	"	
Bromomethane	ND	8.4	"	"	"	"	"	"	
1,3-Butadiene	ND	8.4	"	"	"	"	"	"	
Carbon disulfide	ND	8.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"	
Chlorobenzene	ND	8.4	"	"	"	"	"	"	
Chloroethane	ND	8.4	"	"	"	"	"	"	
Chloroform	ND	8.4	"	"	"	"	"	"	
Chloromethane	ND	8.4	"	"	"	"	"	"	
Cyclohexane	ND	8.4	"	"	"	"	"	"	
Dibromochloromethane	ND	8.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"	
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"	
1,4-Dioxane	ND	8.4	"	"	"	"	"	"	
Ethanol	46	33	"	"	"	"	"	"	
Ethyl Acetate	ND	8.4	"	"	"	"	"	"	
Ethylbenzene	ND	8.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772

FAX: (805) 925-3376

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 149 of 223

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: Sanborn #4, 19-8, 19-10, 30-10, 25-17, 30-6 **Reported:**Richardson TX, 75080 Project Manager: David Ranum 17-Aug-15 15:13

TB 043 A 1503396-03 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA Me	thod TO-15								
Heptane	ND	8.4	ppbv	16.7	B5H0193	08-Aug-15	08-Aug-15	TO-15 mod.	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	ND	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	
Isopropyl alcohol	ND	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	16	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	ND	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	ND	8.4	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Appendix H Analytical Results

Oilfield Environmental and Compliance, INC.

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD **Reported:**Richardson TX, 75080 Project Manager: David Ranum 19-Aug-15 14:05

TB 044 1503434-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Limit				•	•		

Oilfield Environmental and Compliance

Acetone	ND	33	ppbv	16.7	B5H0369	12-Aug-15	12-Aug-15	TO-15 mod.	
Benzene	ND	8.4	"	"	"	"	"	"	
Benzyl chloride	ND	8.4	"	"	"	"	"	"	CCHI
Bromodichloromethane	ND	8.4	"	"	"	"	"	"	
Bromoform	ND	8.4	"	"	"	"	"	"	
Bromomethane	ND	8.4	"	"	"	"	"	"	
1,3-Butadiene	ND	8.4	"	"	"	"	"	"	
Carbon disulfide	8.7	8.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"	
Chlorobenzene	ND	8.4	"	"	"	"	"	"	
Chloroethane	ND	8.4	"	"	"	"	"	"	
Chloroform	ND	8.4	"	"	"	"	"	"	
Chloromethane	ND	8.4	"	"	"	"	"	"	
Cyclohexane	11	8.4	"	"	"	"	"	"	
Dibromochloromethane	ND	8.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"	
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"	
1,4-Dioxane	ND	8.4	"	"	"	"	"	"	CCH
Ethanol	ND	33	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 19-Aug-15 14:05

TB 044 1503434-01 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmenta	l and (Compliance
-----------------------	---------	------------

Volatile Organic Compounds by EPA	Method TO-15								
Ethyl Acetate	ND	8.4	ppbv	16.7	B5H0369	12-Aug-15	12-Aug-15	TO-15 mod.	
Ethylbenzene	ND	8.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"	
Heptane	21	8.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	32	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	CCHI
Isopropyl alcohol	44	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	20	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	38	8.4	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 19-Aug-15 14:05

TB 045 1503434-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Acetone	ND	33	ppbv	16.7	B5H0369	12-Aug-15	12-Aug-15	TO-15 mod.	
Benzene	ND	8.4	"	"	"	"	"	"	
Benzyl chloride	ND	8.4	"	"	"	"	"	"	CCH
Bromodichloromethane	ND	8.4	"	"	"	"	"	"	
Bromoform	ND	8.4	"	"	"	"	"	"	
Bromomethane	ND	8.4	"	"	"	"	"	"	
1,3-Butadiene	ND	8.4	"	"	"	"	"	"	
Carbon disulfide	ND	8.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"	
Chlorobenzene	ND	8.4	"	"	"	"	"	"	
Chloroethane	ND	8.4	"	"	"	"	"	"	
Chloroform	ND	8.4	"	"	"	"	"	"	
Chloromethane	ND	8.4	"	"	"	"	"	"	
Cyclohexane	ND	8.4	"	"	"	"	"	"	
Dibromochloromethane	ND	8.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"	
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"	
1,4-Dioxane	ND	8.4	"	"	"	"	"	"	CCH
Ethanol	ND	33	"	"	"	"	"	"	
Ethyl Acetate	ND	8.4	"	"	"	"	"	"	
Ethylbenzene	ND	8.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 19-Aug-15 14:05

TB 045 1503434-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes
--

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15	;							
Heptane	ND	8.4	ppbv	16.7	B5H0369	12-Aug-15	12-Aug-15	TO-15 mod.	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	8.4	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	CCHI
Isopropyl alcohol	ND	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	13	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	14	8.4	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Appendix H Analytical Results

Oilfield Environmental and Compliance, INC.

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 20-Aug-15 15:50

TB 046 A & B 1503463-01 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method N
--

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15								
Acetone	ND	33	ppbv	16.7	B5H0369	13-Aug-15	13-Aug-15	TO-15 mod.	
Benzene	11	8.4	"	"	"	"	"	"	
Benzyl chloride	ND	8.4	"	"	"	"	"	"	CCHI
Bromodichloromethane	ND	8.4	"	"	"	"	"	"	
Bromoform	ND	8.4	"	"	"	"	"	"	
Bromomethane	ND	8.4	"	"	"	"	"	"	
1,3-Butadiene	ND	8.4	"	"	"	"	"	"	
Carbon disulfide	ND	8.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"	
Chlorobenzene	ND	8.4	"	"	"	"	"	"	
Chloroethane	ND	8.4	"	"	"	"	"	"	
Chloroform	ND	8.4	"	"	"	"	"	"	
Chloromethane	ND	8.4	"	"	"	"	"	"	
Cyclohexane	29	8.4	"	"	"	"	"	"	
Dibromochloromethane	ND	8.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"	
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"	
1,4-Dioxane	ND	8.4	"	"	"	"	"	"	CCHI
Ethanol	36	33	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 20-Aug-15 15:50

TB 046 A & B 1503463-01 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by I	EPA Method TO-15								
Ethyl Acetate	ND	8.4	ppbv	16.7	B5H0369	13-Aug-15	13-Aug-15	TO-15 mod.	
Ethylbenzene	ND	8.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"	
Heptane	28	8.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	58	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	CCHI
Isopropyl alcohol	13	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	ND	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	ND	8.4	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	3400	3300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 20-Aug-15 15:50

TB 047 A & B 1503463-02 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
---------	--------	-----------	-------	----------	-------	----------	----------	--------	-------

Oilfield Environmental and Compliance

Acetone	ND	33	ppbv	16.7	B5H0369	13-Aug-15	13-Aug-15	TO-15 mod.	
Benzene	ND	8.4	"	"	"	"	"	"	
Benzyl chloride	ND	8.4	"	"	"	"	"	"	CCH
Bromodichloromethane	ND	8.4	"	"	"	"	"	"	
Bromoform	ND	8.4	"	"	"	"	"	"	
Bromomethane	ND	8.4	"	"	"	"	"	"	
1,3-Butadiene	ND	8.4	"	"	"	"	"	"	
Carbon disulfide	9.7	8.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"	
Chlorobenzene	ND	8.4	"	"	"	"	"	"	
Chloroethane	ND	8.4	"	"	"	"	"	"	
Chloroform	ND	8.4	"	"	"	"	"	"	
Chloromethane	ND	8.4	"	"	"	"	"	"	
Cyclohexane	ND	8.4	"	"	"	"	"	"	
Dibromochloromethane	ND	8.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"	
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"	
1,4-Dioxane	ND	8.4	"	"	"	"	"	"	CCH
Ethanol	ND	33	"	"	"	"	"	"	
Ethyl Acetate	ND	8.4	"	"	"	"	"	"	
Ethylbenzene	ND	8.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Heptane

Hexachlorobutadiene

1,2,4-Trichlorobenzene 1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

TPH Gasoline (C4-C12)

Vinyl acetate

Vinyl chloride

Xylenes (total)

1,1,2-Trichlorotrifluoroethane

Oilfield Environmental and Compliance, INC.

Volatile Organic Compounds by EPA Method TO-15

Sage Environmental Consulting Project: CARB

ND

24

ND

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 20-Aug-15 15:50

TB 047 A & B 1503463-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

ppbv

16.7

B5H0369 13-Aug-15 13-Aug-15 TO-15 mod.

8.4

8.4

Hexane	ND	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	CCHI
Isopropyl alcohol	ND	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	33	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI

8.4

8.4

8.4

8.4

8.4

8.4

8.4

8.4

8.4

3300

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 20-Aug-15 15:50

TB 048 A & B 1503463-03 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
---------	--------	-----------	-------	----------	-------	----------	----------	--------	-------

Oilfield Environmental and Compliance

Acetone	ND	33	ppbv	16.7	B5H0369	13-Aug-15	13-Aug-15	TO-15 mod.	
Benzene	ND	8.4	"	"	"	"	"	"	
Benzyl chloride	ND	8.4	"	"	"	"	"	"	CCH
Bromodichloromethane	ND	8.4	"	"	"	"	"	"	
Bromoform	ND	8.4	"	"	"	"	"	"	
Bromomethane	ND	8.4	"	"	"	"	"	"	
1,3-Butadiene	ND	8.4	"	"	"	"	"	"	
Carbon disulfide	ND	8.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"	
Chlorobenzene	ND	8.4	"	"	"	"	"	"	
Chloroethane	ND	8.4	"	"	"	"	"	"	
Chloroform	ND	8.4	"	"	"	"	"	"	
Chloromethane	ND	8.4	"	"	"	"	"	"	
Cyclohexane	13	8.4	"	"	"	"	"	"	
Dibromochloromethane	ND	8.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"	
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"	
1,4-Dioxane	ND	8.4	"	"	"	"	"	"	CCH
Ethanol	ND	33	"	"	"	"	"	"	
Ethyl Acetate	ND	8.4	"	"	"	"	"	"	
Ethylbenzene	ND	8.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 20-Aug-15 15:50

TB 048 A & B 1503463-03 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Heptane	19	8.4	ppbv	16.7	B5H0369	13-Aug-15	13-Aug-15	TO-15 mod.	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	44	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	CCHI
Isopropyl alcohol	23	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	8.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	ND	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	9.4	8.4	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD **Reported:**Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 08:30

TB049A&B 1503485-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Limit							

Oilfield Environmental and Compliance

Acetone	ND	33	ppbv	16.7	B5H0387	14-Aug-15	14-Aug-15	TO-15 mod
Benzene	ND	8.4	"	"	"	"	"	"
Benzyl chloride	ND	8.4	"	"	"	"	"	"
Bromodichloromethane	ND	8.4	"	"	"	"	"	"
Bromoform	ND	8.4	"	"	"	"	"	"
Bromomethane	ND	8.4	"	"	"	"	"	"
,3-Butadiene	ND	8.4	"	"	"	"	"	"
Carbon disulfide	ND	8.4	"	"	"	"	"	"
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"
Chlorobenzene	ND	8.4	"	"	"	"	"	"
Chloroethane	ND	8.4	"	"	"	"	"	"
Chloroform	ND	8.4	"	"	"	"	"	"
Chloromethane	ND	8.4	"	"	"	"	"	"
Cyclohexane	ND	8.4	"	"	"	"	"	"
Dibromochloromethane	ND	8.4	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"
,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"
,1-Dichloroethane	ND	8.4	"	"	"	"	"	"
,2-Dichloroethane	ND	8.4	"	"	"	"	"	"
,1-Dichloroethene	ND	8.4	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
,2-Dichloropropane	ND	8.4	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"
,4-Dioxane	ND	8.4	"	"	"	"	"	"
Ethanol	ND	33	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 08:30

TB049A&B 1503485-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
---------	--------	-----------	-------	----------	-------	----------	----------	--------	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by El	PA Method TO-15								
Ethyl Acetate	ND	8.4	ppbv	16.7	B5H0387	14-Aug-15	14-Aug-15	TO-15 mod.	
Ethylbenzene	ND	8.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"	
Heptane	ND	8.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	ND	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	
Isopropyl alcohol	ND	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	9.7	"	19.4	B5H0491	19-Aug-15	19-Aug-15	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	16.7	B5H0387	14-Aug-15	14-Aug-15	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	ND	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	ND	8.4	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 08:30

TB050A&B 1503485-02 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
---------	--------	-----------	-------	----------	-------	----------	----------	--------	-------

Oilfield Environmental and Compliance

Acetone	ND	33	ppbv	16.7	B5H0387	14-Aug-15	14-Aug-15	TO-15 mod
Benzene	ND	8.4	"	"	"	"	"	"
Benzyl chloride	ND	8.4	"	"	"	"	"	"
Bromodichloromethane	ND	8.4	"	"	"	"	"	"
Bromoform	ND	8.4	"	"	"	"	"	"
Bromomethane	ND	8.4	"	"	"	"	"	"
1,3-Butadiene	ND	8.4	"	"	"	"	"	"
Carbon disulfide	ND	8.4	"	"	"	"	"	"
Carbon tetrachloride	ND	8.4	"	"	"	"	"	"
Chlorobenzene	ND	8.4	"	"	"	"	"	"
Chloroethane	ND	8.4	"	"	"	"	"	"
Chloroform	ND	8.4	"	"	"	"	"	"
Chloromethane	ND	8.4	"	"	"	"	"	"
Cyclohexane	ND	8.4	"	"	"	"	"	"
Dibromochloromethane	ND	8.4	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	8.4	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	8.4	"	"	"	"	"	"
Dichlorodifluoromethane	ND	8.4	"	"	"	"	"	"
1,1-Dichloroethane	ND	8.4	"	"	"	"	"	"
1,2-Dichloroethane	ND	8.4	"	"	"	"	"	"
1,1-Dichloroethene	ND	8.4	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	8.4	"	"	"	"	"	"
1,2-Dichloropropane	ND	8.4	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	8.4	"	"	"	"	"	"
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.4	"	"	"	"	"	"
Diisopropyl Ether	ND	8.4	"	"	"	"	"	"
1,4-Dioxane	ND	8.4	"	"	"	"	"	"
Ethanol	61	33	"	"	"	"	"	"
Ethyl Acetate	13	8.4	"	"	"	"	"	"
Ethylbenzene	ND	8.4	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	8.4	"	"	"	"	"	"
4-Ethyltoluene	ND	8.4	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 08:30

TB050A&B 1503485-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method Notes	Analyte	Result	Ι, ρ	Units	Dilution	Batch			Method	Notes
--	---------	--------	------	-------	----------	-------	--	--	--------	-------

Oilfield Environmental and Compliance

Heptane	ND	8.4	ppbv	16.7	B5H0387	14-Aug-15	14-Aug-15	TO-15 mod.	
Hexachlorobutadiene	ND	8.4	"	"	"	"	"	"	
Hexane	ND	8.4	"	"	"	"	"	"	
2-Hexanone	ND	8.4	"	"	"	"	"	"	
Isopropyl alcohol	15	8.4	"	"	"	"	"	"	
Methylene chloride	ND	8.4	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	8.4	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	8.4	"	"	"	"	"	"	
Naphthalene	ND	17	"	"	"	"	"	"	CCHI
Propylene	ND	8.4	"	"	"	"	"	"	
Styrene	ND	8.4	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	8.4	"	"	"	"	"	"	
t-Butyl alcohol	ND	25	"	50	B5H0491	19-Aug-15	20-Aug-15	"	
1,1,2,2-Tetrachloroethane	ND	8.4	"	16.7	B5H0387	14-Aug-15	14-Aug-15	"	
Tetrachloroethene (PCE)	ND	8.4	"	"	"	"	"	"	
Tetrahydrofuran	ND	8.4	"	"	"	"	"	"	
Toluene	32	8.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.4	"	"	"	"	"	"	CCHI
1,1,1-Trichloroethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.4	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	8.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.4	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	8.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.4	"	"	"	"	"	"	
Vinyl acetate	ND	8.4	"	"	"	"	"	"	
Vinyl chloride	ND	8.4	"	"	"	"	"	"	
Xylenes (total)	ND	8.4	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	3300	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Appendix H Analytical Results

Oilfield Environmental and Compliance, INC.

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 11:20

TB 051 A&B 1503504-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Limit							

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15								TS-
Acetone	39	34	ppbv	17.2	B5H0537	20-Aug-15	21-Aug-15	TO-15 mod.	
Benzene	ND	8.6	"	"	"	"	"	"	
Benzyl chloride	ND	8.6	"	"	"	"	"	"	
Bromodichloromethane	ND	8.6	"	"	"	"	"	"	
Bromoform	ND	8.6	"	"	"	"	"	"	
Bromomethane	ND	8.6	"	"	"	"	"	"	
1,3-Butadiene	ND	8.6	"	"	"	"	"	"	
Carbon disulfide	ND	8.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.6	"	"	"	"	"	"	
Chlorobenzene	ND	8.6	"	"	"	"	"	"	
Chloroethane	ND	8.6	"	"	"	"	"	"	
Chloroform	ND	8.6	"	"	"	"	"	"	
Chloromethane	ND	8.6	"	"	"	"	"	"	
Cyclohexane	ND	8.6	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.6	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.6	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	8.6	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	8.6	"	"	"	"	"	"	
Diisopropyl Ether	ND	8.6	"	"	"	"	"	"	
1,4-Dioxane	ND	8.6	"	"	"	"	"	"	
Ethanol	70	34	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 11:20

TB 051 A&B 1503504-01 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
---------	--------	-----------	-------	----------	-------	----------	----------	--------	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA Method TO-15									
Ethyl Acetate 17	8.6	ppbv	17.2	B5H0537	20-Aug-15	21-Aug-15	TO-15 mod.		
Ethylbenzene ND	8.6	"	"	"	"	"	"		
Ethyl t-Butyl Ether ND	8.6	"	"	"	"	"	"		
-Ethyltoluene ND	8.6	"	"	"	"	"	"		
Heptane ND	8.6	"	"	"	"	"	"		
Hexachlorobutadiene ND	8.6	"	"	"	"	"	"		
Hexane ND	8.6	"	"	"	"	"	"		
2-Hexanone ND	8.6	"	"	"	"	"	"		
sopropyl alcohol 26	8.6	"	"	"	"	"	"		
Methylene chloride ND	8.6	"	"	"	"	"	"		
Methyl Ethyl Ketone ND	8.6	"	"	"	"	"	"		
Methyl Isobutyl Ketone ND	8.6	"	"	"	"	"	"		
Methyl-t-butyl ether ND	8.6	"	"	"	"	"	"		
Naphthalene ND	17	"	"	"	"	"	"		
Propylene ND	8.6	"	"	"	"	"	"		
Styrene ND	8.6	"	"	"	"	"	"		
-Amyl Methyl Ether ND	8.6	"	"	"	"	"	"		
-Butyl alcohol ND	8.6	"	"	"	"	"	"		
,1,2,2-Tetrachloroethane ND	8.6	"	"	"	"	"	"		
Tetrachloroethene (PCE) ND	8.6	"	"	"	"	"	"		
Tetrahydrofuran ND	8.6	"	"	"	"	"	"		
Toluene 13	8.6	"	"	"	"	"	"		
,2,4-Trichlorobenzene ND	8.6	"	"	"	"	"	"		
,1,1-Trichloroethane ND	8.6	"	"	"	"	"	"		
,1,2-Trichloroethane ND	8.6	"	"	"	"	"	"		
Frichloroethene (TCE) ND	8.6	"	"	"	"	"	"		
Frichlorofluoromethane ND	8.6	"	"	"	"	"	"		
,1,2-Trichlorotrifluoroethane ND	8.6	"	"	"	"	"	"		
,2,4-Trimethylbenzene ND	8.6	"	"	"	"	"	"		
,3,5-Trimethylbenzene ND	8.6	"	"	"	"	"	"		
Vinyl acetate ND	8.6	"	"	"	"	"	"		
Vinyl chloride ND	8.6	"	"	"	"	"	"		
Kylenes (total) ND	8.6	"	"	"	"	"	"		
TPH Gasoline (C4-C12) ND									

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

Project Number: CARB #1344 Feather River AQMD 720 West Arapaho Road Reported: Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 11:20

TB 052 A&B 1503504-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmental	and (Compliance
------------------------	-------	------------

Volatile Organic Compounds by EPA	Method TO-15								TS-3
Acetone	ND	40	ppbv	19.8	B5H0537	20-Aug-15	21-Aug-15	TO-15 mod.	
Benzene	ND	9.9	"	"	"	"	"	"	
Benzyl chloride	ND	9.9	"	"	"	"	"	"	
Bromodichloromethane	ND	9.9	"	"	"	"	"	"	
Bromoform	ND	9.9	"	"	"	"	"	"	
Bromomethane	ND	9.9	"	"	"	"	"	"	
1,3-Butadiene	ND	9.9	"	"	"	"	"	"	
Carbon disulfide	ND	9.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	9.9	"	"	"	"	"	"	
Chlorobenzene	ND	9.9	"	"	"	"	"	"	
Chloroethane	ND	9.9	"	"	"	"	"	"	
Chloroform	ND	9.9	"	"	"	"	"	"	
Chloromethane	ND	9.9	"	"	"	"	"	"	
Cyclohexane	17	9.9	"	"	"	"	"	"	
Dibromochloromethane	ND	9.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	9.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	9.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	9.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	9.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	9.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	9.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	9.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	9.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.9	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	9.9	"	"	"	"	"	"	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	9.9	"	"	"	"	"	"	
Diisopropyl Ether	ND	9.9	"	"	"	"	"	"	
1,4-Dioxane	ND	9.9	"	"	"	"	"	"	
Ethanol	ND	40	"	"	"	"	"	"	
Ethyl Acetate	ND	9.9	"	"	"	"	"	"	
Ethylbenzene	42	9.9	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	9.9	"	"	"	"	"	"	
4-Ethyltoluene	ND	9.9	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 11:20

TB 052 A&B 1503504-02 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA	Method TO-15	;							TS
Heptane	69	9.9	ppbv	19.8	B5H0537	20-Aug-15	21-Aug-15	TO-15 mod.	
Hexachlorobutadiene	ND	9.9	"	"	"	"	"	"	
Hexane	30	9.9	"	"	"	"	"	"	
2-Hexanone	ND	9.9	"	"	"	"	"	"	
Isopropyl alcohol	ND	9.9	"	"	"	"	"	"	
Methylene chloride	ND	9.9	"	"	"	"	"	"	
Methyl Ethyl Ketone	ND	9.9	"	"	"	"	"	"	
Methyl Isobutyl Ketone	ND	9.9	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	9.9	"	"	"	"	"	"	
Naphthalene	ND	20	"	"	"	"	"	"	
Propylene	ND	9.9	"	"	"	"	"	"	
Styrene	ND	9.9	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	9.9	"	"	"	"	"	"	
t-Butyl alcohol	ND	9.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	9.9	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	9.9	"	"	"	"	"	"	
Tetrahydrofuran	ND	9.9	"	"	"	"	"	"	
Toluene	150	9.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	9.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	9.9	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	9.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	9.9	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane	ND	9.9	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	9.9	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	9.9	"	"	"	"	"	"	
Vinyl acetate	ND	9.9	"	"	"	"	"	"	
Vinyl chloride	ND	9.9	"	"	"	"	"	"	
Xylenes (total)	300	9.9	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	ND	4000	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

720 West Arapaho Road Project Number: CARB #1344 Feather River AQMD Reported:
Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 11:20

TB 053 A&B 1503504-03 (Air)

Analyte Result Reporting Units Dilution Batch Prepared Analyzed Method	Notes
--	-------

Oilfield Environmental	and (Compliance
------------------------	-------	------------

Volatile Organic Compounds by EPA	Method TO-15							R-02, TS-
Acetone	ND	150	ppbv	75	B5H0537	20-Aug-15	21-Aug-15	TO-15 mod.
Benzene	ND	38	"	"	"	"	"	"
Benzyl chloride	ND	38	"	"	"	"	"	"
Bromodichloromethane	ND	38	"	"	"	"	"	"
Bromoform	ND	38	"	"	"	"	"	"
Bromomethane	ND	38	"	"	"	"	"	"
1,3-Butadiene	ND	38	"	"	"	"	"	"
Carbon disulfide	ND	38	"	"	"	"	"	"
Carbon tetrachloride	ND	38	"	"	"	"	"	"
Chlorobenzene	ND	38	"	"	"	"	"	"
Chloroethane	ND	38	"	"	"	"	"	"
Chloroform	ND	38	"	"	"	"	"	"
Chloromethane	ND	38	"	"	"	"	"	"
Cyclohexane	390	38	"	"	"	"	"	"
Dibromochloromethane	ND	38	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	38	"	"	"	"	"	"
,2-Dichlorobenzene	ND	38	"	"	"	"	"	"
,3-Dichlorobenzene	ND	38	"	"	"	"	"	"
,4-Dichlorobenzene	ND	38	"	"	"	"	"	"
Dichlorodifluoromethane	ND	38	"	"	"	"	"	"
1,1-Dichloroethane	ND	38	"	"	"	"	"	"
,2-Dichloroethane	ND	38	"	"	"	"	"	"
,1-Dichloroethene	ND	38	"	"	"	"	"	"
eis-1,2-Dichloroethene	ND	38	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	38	"	"	"	"	"	"
,2-Dichloropropane	ND	38	"	"	"	"	"	"
ris-1,3-Dichloropropene	ND	38	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	38	"	"	"	"	"	"
,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	38	"	"	"	"	"	"
Diisopropyl Ether	ND	38	"	"	"	"	"	"
,4-Dioxane	ND	38	"	"	"	"	"	"
Ethanol	ND	150	"	"	"	"	"	"
Ethyl Acetate	ND	38	"	"	"	"	"	"
Ethylbenzene	ND	38	"	"	"	"	"	"
Ethyl t-Butyl Ether	ND	38	"	"	"	"	"	"
1-Ethyltoluene	ND	38	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Sage Environmental Consulting Project: CARB

Project Number: CARB #1344 Feather River AQMD 720 West Arapaho Road Reported: Richardson TX, 75080 Project Manager: David Ranum 24-Aug-15 11:20

TB 053 A&B 1503504-03 (Air)

Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
---------	--------	-----------	-------	----------	-------	----------	----------	--------	-------

Oilfield Environmental and Compliance

Heptane ND 38 ppbv 75 B5H057 20-Aug-15 TO-15 mod. Hexane 74 38 "	Volatile Organic Compounds by I	EPA Method TO-15							R-02, TS-3
Hexane	Heptane	ND	38	ppbv	75	B5H0537	20-Aug-15	21-Aug-15	TO-15 mod.
2-Hexanone ND 38	Hexachlorobutadiene	ND	38	"	"	"	"	"	"
Isopropyl alcohol ND 38	Hexane	74	38	"	"	"	"	"	m .
Methylen chloride	2-Hexanone	ND	38	"	"	"	"	"	"
Methyl Ethyl Ketone ND 38 " " " " " " " " " " " " " " " " " "	Isopropyl alcohol	ND	38	"	"	"	"	"	"
Methyl Eurly Retone	Methylene chloride	ND	38	"	"	"	"	"	"
Methyl-t-butyl ether ND 38 "	Methyl Ethyl Ketone	ND	38	"	"	"	"	"	"
Naphthalene ND 75 " <	Methyl Isobutyl Ketone	ND	38	"	"	"	"	"	"
Propylene ND 38 " <th< td=""><td>Methyl-t-butyl ether</td><td>ND</td><td>38</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td></th<>	Methyl-t-butyl ether	ND	38	"	"	"	"	"	"
Styrene ND 38 " " " " " " " " " " " " " " " " " "	Naphthalene	ND	75	"	"	"	"	"	m .
t-Amyl Methyl Ether t-Butyl alcohol ND 38 " " " " " " " " " " " " " " " " " "	Propylene	ND	38	"	"	"	"	"	m .
t-Butyl alcohol ND 38 " " " " " " " " " " " " " " " " " "	Styrene	ND	38	"	"	"	"	"	m .
1,1,2,2-Tetrachloroethane ND 38 "<	t-Amyl Methyl Ether	ND	38	"	"	"	"	"	"
Tetrachloroethene (PCE) ND 38 " <td>t-Butyl alcohol</td> <td>ND</td> <td>38</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>m .</td>	t-Butyl alcohol	ND	38	"	"	"	"	"	m .
Tetrahydrofuran ND 38 " " " " " " " " " " " " " " " " " "	1,1,2,2-Tetrachloroethane	ND	38	"	"	"	"	"	m .
Toluene ND 38 " " " " " " " " " " " " 1,2,4-Trichlorobenzene ND 38 " " " " " " " " " " " " " " " " " "	Tetrachloroethene (PCE)	ND	38	"	"	"	"	"	m .
1,2,4-Trichlorobenzene ND 38 " </td <td>Tetrahydrofuran</td> <td>ND</td> <td>38</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>m .</td>	Tetrahydrofuran	ND	38	"	"	"	"	"	m .
1,1,1-Trichloroethane ND 38 " <td>Toluene</td> <td>ND</td> <td>38</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>m .</td>	Toluene	ND	38	"	"	"	"	"	m .
1,1,2-Trichloroethane ND 38 " <td>1,2,4-Trichlorobenzene</td> <td>ND</td> <td>38</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>m .</td>	1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	m .
Trichloroethene (TCE) ND 38 "	1,1,1-Trichloroethane	ND	38	"	"	"	"	"	m .
Trichlorofluoromethane ND 38 " <td>1,1,2-Trichloroethane</td> <td>ND</td> <td>38</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>m .</td>	1,1,2-Trichloroethane	ND	38	"	"	"	"	"	m .
1,1,2-Trichlorotrifluoroethane ND 38 "	Trichloroethene (TCE)	ND	38	"	"	"	"	"	m .
1,2,4-Trimethylbenzene ND 38 " </td <td>Trichlorofluoromethane</td> <td>ND</td> <td>38</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>m .</td>	Trichlorofluoromethane	ND	38	"	"	"	"	"	m .
1,3,5-Trimethylbenzene ND 38 " </td <td>1,1,2-Trichlorotrifluoroethane</td> <td>ND</td> <td>38</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>m .</td>	1,1,2-Trichlorotrifluoroethane	ND	38	"	"	"	"	"	m .
Vinyl acetate ND 38 "	1,2,4-Trimethylbenzene	ND	38	"	"	"	"	"	II .
Vinyl chloride ND 38 "	1,3,5-Trimethylbenzene	ND	38	"	"	"	"	"	II .
Xylenes (total) ND 38 " " " " " "	Vinyl acetate	ND	38	"	"	"	"	"	"
Ayleties (total) ND 36	Vinyl chloride	ND	38	"	"	"	"	"	II .
TPH Gasoline (C4-C12) 21000 15000 " " " " " " "	Xylenes (total)	ND	38	"	"	"	"	"	"
	TPH Gasoline (C4-C12)	21000	15000	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Long Beach

Description: TB001 Note: CARB #1344 SAMPLE ID: 1500280-1

Date Sampled: 01/20/15 @ 1051 Date Analyzed: 01/22/15 @ 1538

Lab Contact: J. Carstens

Meter: -

	Gas Analys	is by Chr	omatography - A	STM D 1945/	3588		
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.39	N/A	23.72		-	
Nitrogen	28.01	78.48	N/A	76.17		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.05	0.00	0.07		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.08	0.01	0.04		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9966	air = 1.0000				
Density, Calculated	_	1.2009	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.44			CHONS	Mole %	Wt%
					Carbon	0.13	0.05
Gross Calorific Valu	e				Hydrogen	0.15	0.01
BTU/ft ³ dry		0.8			Oxygen	21.39	23.77
BTU/ft ³ wet		8.0			Nitrogen	78.32	76.17
Net Calorific Value					Sulfur	0.00	0.00
BTU/ft ³ dry		0.7	EPA 'F' Facto	r (60°F, 1ATM)		1283158.4	ļ
STU/ft ³ wet		0.7		SDCF/MMBTU			
Hydrogen Sulfide =	NA ppm	-					
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	et	-
ND: None Detected	NA: Not Ana	lyzed		G/MCF: Gallons	s/Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Long Beach

Description: TB002 Note: CARB #1344 SAMPLE ID: 1500280-2

Date Sampled: 01/20/15 @ 1126 Date Analyzed: 01/22/15 @ 1636

Lab Contact: J. Carstens

Meter:

Temperature:

Pressure: psig °F

Gas Analysis by Chromatography - ASTM D 1945/3588 Component MW Mole %* Kg-C/Kg-fuel* Weight %* G/MCF* Oxygen 32.00 21.41 N/A 23.73 78.54 Nitrogen 28.01 N/A 76.20 Hydrogen 2.01 0.00 0.00 0.00 Carbon Dioxide 44.01 0.05 0.00 0.07 Carbon Monoxide 28.01 0.00 N/A 0.00 Methane 16.04 0.00 0.00 0.00 Ethane 30.07 0.00 0.00 0.00 0.000 Ethene 28.05 0.00 0.00 0.00 0.000 Propane 44.10 0.00 0.00 0.00 0.000 Propene 42.08 0.00 0.00 0.00 0.000 i-Butane 58.12 0.00 0.00 0.00 0.000 n-Butane 58.12 0.00 0.00 0.00 0.000 neo-Pentane 0.00 0.00 0.00 0.000 i-Pentane 72.15 0.00 0.00 0.00 0.000 n-Pentane 72.15 0.00 0.00 0.00 0.000 n-Hexane 86.18 0.00 0.00 0.00 0.000 Hexanes Plus 86.18 0.00 0.00 0.00 0.000 **Totals** 100.0 0.0 100.0 0.00 0.9969 air = 1.0000Specific Gravity, Calculated Density, Calculated Kg/m3 1.2013 air - 1.205 Kg/m3 Compressibility (Z) Factor (60°F, 1ATM) 0.9996 MW of fuel gas, calculated (60°F, 1ATM) 28.45 **CHONS** Mole % Wt% Carbon 0.05 0.02 Gross Calorific Value Hydrogen 0.00 0.00 BTU/ft³ dry 0.0 Oxygen 21.45 23.78 BTU/ft3 wet 0.0 Nitrogen 78.50 76.20 Sulfur 0.00 0.00 Net Calorific Value BTU/ft³ dry EPA 'F' Factor (60°F, 1ATM) 0.0 #DIV/0! BTU/ft3 wet 0.0 SDCF/MMBTU Hydrogen Sulfide = All results reported at 60° F and 14.696 psia. * Normalized values SDCF:Standard dry cubic feet ND: None Detected G/MCF: Gallons/Thousand Cubic Feet NA: Not Analyzed

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Long Beach

Description: TB003 Note: CARB #1344 SAMPLE ID: 1500280-3

Date Sampled: 01/20/15 @ 1511 Date Analyzed: 01/22/15 @ 1734

Lab Contact: J. Carstens

Meter:

Pressure:

psig ۰F Temperature:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*		
Oxygen	32.00	21.35	N/A	23.67		-		
Nitrogen	28.01	78.39	N/A	76.07		-		
Hydrogen	2.01	0.00	0.00	0.00		-		
Carbon Dioxide	44.01	0.12	0.01	0.19		-		
Carbon Monoxide	28.01	0.00	N/A	0.00		-		
Methane	16.04	0.13	0.01	0.07		-		
Ethane	30.07	0.00	0.00	0.00		0.000		
Ethene	28.05	0.00	0.00	0.00		0.000		
Propane	44.10	0.00	0.00	0.00		0.000		
Propene	42.08	0.00	0.00	0.00		0.000		
i-Butane	58.12	0.00	0.00	0.00		0.000		
n-Butane	58.12	0.00	0.00	0.00		0.000		
neo-Pentane		0.00	0.00	0.00		0.000		
i-Pentane	72.15	0.00	0.00	0.00		0.000		
n-Pentane	72.15	0.00	0.00	0.00		0.000		
n-Hexane	86.18	0.00	0.00	0.00		0.000		
Hexanes Plus	86.18	0.00	0.00	0.00		0.000		
Totals		100.0	0.0	100.0		0.00		
Specific Gravity, Ca		0.9967	air = 1.0000					
Density, Calculated	•	1.2011	air – 1.205 Kg/m3					
	Factor (60°F, 1ATM)	0.9996						
MW of fuel gas, calc	culated (60°F, 1ATM)	28.45			CHONS Carbon	Mole % 0.26	Wt% 0.11	
Gross Calorific Valu	e				Hydrogen	0.26	0.02	
BTU/ft ³ dry		1.3			Oxygen	21.39	23.81	
BTU/ft ³ wet		1.3			Nitrogen Sulfur	78.08 0.00	76.07 0.00	
Net Calorific Value						2.00		
BTU/ft ³ dry		1.2	EPA 'F' Facto	r (60°F, 1ATM)		758626.8		
BTU/ft ³ wet		1.2		SDCF/MMBTU				
Hydrogen Sulfide =	NA ppm							
	at 60°F and 14.696 psia.							
* Normalized values				SDCF:Standard dry cubic feet				
ND: None Detected	NA: Not Ana	alvzed		G/MCF: Gallons	/Thousand C	ubic Feet		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB004 Note: CARB #1344 SAMPLE ID: 1500307-1 Date Sampled: 1/21/2015 Date Analyzed: 01/23/15 @ 1336

Lab Contact: J. Carstens

Meter: -

	Gas Analys	is by Chr	omatography - A	STM D 1945/	3588		
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.51	N/A	23.83		-	
Nitrogen	28.01	78.46	N/A	76.11		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.06		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9970	air = 1.0000				
Density, Calculated	_	1.2014	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.46			CHONS	Mole %	Wt%
					Carbon	0.04	0.02
Gross Calorific Value	e				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.53	23.87
BTU/ft ³ wet		0.0			Nitrogen	78.42	76.11 0.00
Net Calorific Value					Sulfur	0.00	0.00
BTU/ft ³ dry		0.0	EPA 'F' Factor	r (60°F, 1ATM)	1	Not Applicab	ole
BTU/ft ³ wet		0.0		SDCF/MMBTU			
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	ŧt	
ND: None Detected	NA: Not Ana	lyzed		G/MCF: Gallons	s/Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB005 Note: CARB #1344 SAMPLE ID: 1500307-2 Date Sampled: 1/21/2015 Date Analyzed: 01/23/15 @ 1405

Lab Contact: J. Carstens

Meter: -

	Gas Analysi	S by Cili	omatography - A	13 INI D 1945/	3300		
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.27	N/A	23.63		-	
Nitrogen	28.01	77.58	N/A	75.44		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.06	0.01	0.10		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.89	0.07	0.49		-	
Ethane	30.07	0.05	0.00	0.05		0.012	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.07	0.01	0.10		0.019	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.02	0.00	0.04		0.007	
n-Butane	58.12	0.04	0.00	0.08		0.012	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.01	0.00	0.04		0.005	
n-Pentane	72.15	0.01	0.00	0.03		0.004	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.1	100.0		0.06	
Specific Gravity, Cal	culated	0.9946	air = 1.0000				
Density, Calculated	Kg/m3	1.1985	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
	culated (60°F, 1ATM)	28.39			CHONS Carbon	Mole % 1.57	Wt% 0.68
Gross Calorific Value	е				Hydrogen	2.56	0.18
BTU/ft ³ dry		14.5			Oxygen	20.68	23.70
BTU/ft ³ wet		14.2			Nitrogen Sulfur	75.19 0.00	75.44 0.00
Net Calorific Value							
BTU/ft ³ dry		13.1	EPA 'F' Facto	r (60°F, 1ATM)		76986.5	
BTU/ft ³ wet		12.9		SDCF/MMBTU			
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Anal	vzed		G/MCF: Gallons	/Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB006 Note: CARB #1344 SAMPLE ID: 1500307-3 Date Sampled: 1/21/2015 Date Analyzed: 01/23/15 @ 1435 Lab Contact: J. Carstens

Meter: -

		-					
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.51	N/A	23.83		-	
Nitrogen	28.01	78.46	N/A	76.11		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.06		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal	culated	0.9970	air = 1.0000				
Density, Calculated	Kg/m3	1.2014	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.46			CHONS	Mole %	Wt%
	,				Carbon	0.05	0.02
Gross Calorific Value	е				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.53	23.87
BTU/ft ³ wet		0.0			Nitrogen	78.42	76.11
Net Calorific Value					Sulfur	0.00	0.00
BTU/ft ³ dry		0.0	EPA 'F' Facto	r (60°F, 1ATM)	ı	Not Applicab	ole
BTU/ft ³ wet		0.0		SDCF/MMBTU		.s., ppilouc	
Hydrogen Sulfide =	NA ppm	0.0					
, ,	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	et	-
ND: None Detected	NA: Not Anal	vzed		G/MCF: Gallons/Thousand Cubic Feet			

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB007 Note: CARB #1344 SAMPLE ID: 1500306-1 Date Sampled: 1/22/2015 Date Analyzed: 01/23/15 @ 1505 Lab Contact: J. Carstens

Meter: -

Pressure: - psig

Temperature: - ^oF

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.48	N/A	23.81		-	
Nitrogen	28.01	78.47	N/A	76.12		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.05	0.00	0.07		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal	culated	0.9970	air = 1.0000				
Density, Calculated	Kg/m3	1.2014	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.46			CHONS	Mole %	Wt%
Gross Calorific Value	e				Carbon Hydrogen	0.05 0.00	0.02
BTU/ft ³ dry	-	0.0			Oxygen	21.52	23.86
BTU/ft ³ wet		0.0			Nitrogen	78.43	76.12
		0.0			Sulfur	16.43 0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		0.0	EPA 'F' Factor	(60°F, 1ATM)	Not Applicable		ole
BTU/ft ³ wet		0.0		SDCF/MMBTU		-	
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	alvzed		G/MCF: Gallons	/Thousand C	uhic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB008 Note: CARB #1344 SAMPLE ID: 1500306-2 Date Sampled: 1/22/2015 Date Analyzed: 01/23/15 @ 1535 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.48	N/A	23.81		_	
Nitrogen	28.01	78.34	N/A	76.03		_	
-lydrogen	2.01	0.00	0.00	0.00		_	
Carbon Dioxide	44.01	0.04	0.00	0.07		_	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.12	0.01	0.06		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.01	0.00	0.02		0.004	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
eo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
lexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9966	air = 1.0000				
Density, Calculated	•	1.2009	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
//W of fuel gas, calc	ulated (60°F, 1ATM)	28.44			CHONS Carbon	Mole % 0.21	Wt% 0.09
Fross Calorific Value	3				Hydrogen	0.28	0.02
BTU/ft ³ dry		1.5			Oxygen	21.45	23.86
BTU/ft ³ wet		1.5			Nitrogen	78.06	76.03
JI O/IL WGL		1.5			Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		1.4	EPA 'F' Facto	r (60°F, 1ATM)		670315.2	
BTU/ft ³ wet		1.3		SDCF/MMBTU			
Hydrogen Sulfide =	NA ppm						
all results reported a	t 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	et ===	
D: None Detected NA: Not Analyzed G/MCF: Gallons/Thousand Cubic Feet							

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Note: CARB #1344

Description: TB009

SAMPLE ID: 1500306-3 Date Sampled: 1/22/2015 Date Analyzed: 01/23/15 @ 1608

Lab Contact: J. Carstens

Meter:

Pressure: psig ۰F Temperature:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.34	N/A	23.71		-	
Nitrogen	28.01	77.92	N/A	75.82		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.05	0.00	0.08		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.69	0.06	0.39		_	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.1	100.0		0.00	
Specific Gravity, Cal		0.9940	air = 1.0000				
Density, Calculated	•	1.1978	air – 1.205 Kg/m3				
	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.37			CHONS Carbon	Mole % 0.74	Wt% 0.31
Gross Calorific Valu	е				Hydrogen	1.36	0.10
3TU/ft ³ dry		7.0			Oxygen	21.08	23.77
BTU/ft ³ wet		6.9			Nitrogen Sulfur	76.81 0.00	75.82 0.00
Net Calorific Value							
BTU/ft ³ dry		6.3	EPA 'F' Facto	r (60°F, 1ATM)	150607.6		
BTU/ft ³ wet		6.2		SDCF/MMBTU			
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	duzod		C/MCE, Callana	/Thousand Cubic Feet		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB010 Note: CARB #1344 SAMPLE ID: 1500317-1 Date Sampled: 1/23/2015 Date Analyzed: 01/23/15 @ 1639

Lab Contact: J. Carstens

Meter:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.48	N/A	23.81		-	
Nitrogen	28.01	78.48	N/A	76.13		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.06		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		_	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9970	air = 1.0000				
Density, Calculated	_	1.2014	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.46			CHONS	Mole %	Wt%
-					Carbon	0.05	0.02
Gross Calorific Value	е				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.51	23.85
BTU/ft ³ wet		0.0			Nitrogen Sulfur	78.44 0.00	76.13 0.00
Net Calorific Value							
BTU/ft ³ dry		0.0	EPA 'F' Facto	r (60°F, 1ATM)	1	Not Applicat	ole
BTU/ft ³ wet		0.0		SDCF/MMBTU			
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	ŧt	
ND: None Detected	NA: Not Anal	vzed		G/MCF: Gallons	llons/Thousand Cubic Feet		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB011 Note: CARB #1344 SAMPLE ID: 1500317-2 Date Sampled: 1/23/2015 Date Analyzed: 01/23/15 @ 1705 Lab Contact: J. Carstens

Meter:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.57	N/A	23.90		_	
Nitrogen	28.01	78.41	N/A	76.06		_	
Hydrogen	2.01	0.00	0.00	0.00		_	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9970	air = 1.0000				
Density, Calculated	•	1.2014	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.46			CHONS	Mole %	Wt%
					Carbon	0.04	0.02
Gross Calorific Value	Э				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.59	23.93
BTU/ft ³ wet		0.0			Nitrogen Sulfur	78.38 0.00	76.06 0.00
Net Calorific Value							
BTU/ft ³ dry		0.0	EPA 'F' Facto	r (60°F, 1ATM)	I	Not Applicab	le
BTU/ft ³ wet		0.0		SDCF/MMBTU		3.1. Pp.1.000	-
Hydrogen Sulfide =	NA ppm						
All results reported a	t 60°F and 14.696 psia.						
Normalized values		SDCF:Standard dry cubic feet					
ND: None Detected	NA: Not Ana	. I			/Thousand Cubic Feet		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB012 Note: CARB #1344 SAMPLE ID: 1500317-3 Rev. Date Sampled: 1/23/2015 Date Analyzed: 01/23/15 @ 1737 Lab Contact: J. Carstens

Meter:

weter. -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.45	N/A	23.77		_	
Nitrogen	28.01	78.53	N/A	76.19		_	
Hydrogen	2.01	0.00	0.00	0.00		_	
Carbon Dioxide	44.01	0.03	0.00	0.04		_	
Carbon Monoxide	28.01	0.00	N/A	0.00		_	
Salbon Monoxido	20.01	0.00	14// (0.00			
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
eo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
lexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal	culated	0.9968	air = 1.0000				
Density, Calculated	Kg/m3	1.2012	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
/IW of fuel gas, calc	ulated (60°F, 1ATM)	28.45			CHONS	Mole %	Wt%
.	, ,				Carbon	0.03	0.01
Gross Calorific Value)				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.46	23.80
BTU/ft ³ wet		0.0			Nitrogen	78.50	76.19
2.3/11 1131		0.0			Sulfur	0.00	0.00
Net Calorific Value					<i>z</i>		
BTU/ft ³ dry		0.0	EPA 'F' Facto	r (60°F, 1ATM)	ı	Not Applicab	ole
BTU/ft ³ wet		0.0	2.7. 1 1 4010	SDCF/MMBTU		tot / tppiloac	,,,,
Hydrogen Sulfide =	NA ppm	0.0					
, ,	t 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	et .	
ND: None Detected	NA: Not Ana				ons/Thousand Cubic Feet		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB013 Note: CARB #1344 SAMPLE ID: 1500343-1 Date Sampled: 1/26/2015 Date Analyzed: 01/27/15 @ 1206

Lab Contact: J. Carstens

Meter: -

	Gas Analys	is by Chr	omatography - A	STM D 1945/	3588		
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.34	N/A	23.67		-	
Nitrogen	28.01	78.36	N/A	76.10		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.02	0.00	0.03		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.24	0.02	0.13		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.03	0.00	0.04		0.007	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.01	0.00	0.03		0.004	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.01	
Specific Gravity, Cal	culated	0.9960	air = 1.0000				
Density, Calculated	Kg/m3	1.2002	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc Gross Calorific Valu	culated (60°F, 1ATM)	28.43			CHONS Carbon Hydrogen	Mole % 0.39 0.64	Wt% 0.17 0.05
BTU/ft ³ dry	•	3.5			Oxygen	21.20	23.69
BTU/ft ³ wet							
BTU/IL Wel		3.4			Nitrogen Sulfur	77.77 0.00	76.10 0.00
Net Calorific Value							
BTU/ft ³ dry		3.2	EPA 'F' Factor	r (60°F, 1ATM)		295103.3	
BTU/ft ³ wet		3.1		SDCF/MMBTU			
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	ŧ	
ND: None Detected	NA: Not Ana	alyzed		G/MCF: Gallons	/Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB014 Note: CARB #1344 SAMPLE ID: 1500370-1 Date Sampled: 1/27/2015 Date Analyzed: 01/28/15 @ 1228 Lab Contact: J. Carstens

Meter:

weter. -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.16	N/A	23.47		-	
Nitrogen	28.01	78.67	N/A	76.39		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.05	0.00	0.07		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.12	0.01	0.07		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Ca		0.9961	air = 1.0000				
Density, Calculated	•	1.2002	air – 1.205 Kg/m3				
	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, cald	culated (60°F, 1ATM)	28.43			CHONS	Mole %	Wt%
					Carbon	0.18	0.07
Gross Calorific Valu	е				Hydrogen	0.25	0.02
BTU/ft ³ dry		1.3			Oxygen	21.14	23.52
BTU/ft ³ wet		1.2			Nitrogen Sulfur	78.43 0.00	76.39 0.00
Net Calorific Value							
BTU/ft ³ dry		1.1	EPA 'F' Fact	or (60°F, 1ATM)	800523.4		
BTU/ft ³ wet		1.1	SDCF/MMBTU				
Hydrogen Sulfide =	ND ppm						
· · · · · · · · · · · · · · · · · · ·	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	-		
ND: None Detected	NA: Not Ana	alyzed		G/MCF: Gallons/	Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB015 Note: CARB #1344 SAMPLE ID: 1500370-2 Date Sampled: 1/27/2015 Date Analyzed: 01/28/15 @ 1256 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.18	N/A	23.42		-	
Nitrogen	28.01	78.62	N/A	76.12		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.06		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.03	0.00	0.06		0.010	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.04	0.00	0.09		0.014	
n-Pentane	72.15	0.04	0.00	0.11		0.015	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.05	0.00	0.14		0.019	
Totals	tals 100.0		0.0	100.0		0.06	
Specific Gravity, Cal		0.9990	air = 1.0000				
Density, Calculated	•	1.2038	air – 1.205 Kg/m3				
• • • •	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.51			CHONS	Mole %	Wt%
					Carbon	0.83	0.35
Gross Calorific Value	9				Hydrogen	0.94	0.07
BTU/ft ³ dry		6.4			Oxygen	20.88	23.47
BTU/ft ³ wet		6.3			Nitrogen Sulfur	77.35 0.00	76.12 0.00
Net Calorific Value							
BTU/ft ³ dry		5.9	EPA 'F' Facto	or (60°F, 1ATM)	164421 8		
BTU/ft ³ wet		5.8	2.7	(00 - ,)	SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm				- , <u>-</u>	-	
All results reported a	it 60°F and 14.696 psia.						
Normalized values	·		SDCF:Standard dry cubic feet				
			G/MCF: Gallons/Thousand Cubic Feet				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB016 Note: CARB #1344 SAMPLE ID: 1500370-3 Date Sampled: 1/27/2015 Date Analyzed: 01/28/15 @ 1338

Lab Contact: J. Carstens

Meter: -

	Gas Analys	sis by Chr	omatography - A	STM D 1945/3	3588		
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.20	N/A	23.50		-	
Nitrogen	28.01	78.75	N/A	76.42		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.05	0.00	0.08		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals	Totals		0.0	100.0		0.00	
Specific Gravity, Ca	lculated	0.9967	air = 1.0000				
Density, Calculated	Kg/m3	1.2010	air – 1.205 Kg/m3				
Compressibility (Z) I	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, cald	culated (60°F, 1ATM)	28.45			CHONS	Mole %	Wt%
					Carbon	0.06	0.03
Gross Calorific Valu	е				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.24	23.55
BTU/ft ³ wet		0.0			Nitrogen	78.70	76.42
Net Calorific Value					Sulfur	0.00	0.00
BTU/ft ³ dry		0.0	EDA 'E' Foot	tor (60ºF, 1ATM)	Connot Cal	vuloto	
BTU/ft ³ wet			EFA F FACI	ioi (ou r, IAINI)			
	ND	0.0			SDCF/MMB	IU	
Hydrogen Sulfide = All results reported a	ND ppm at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	alyzed		G/MCF: Gallons	•		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB017 Note: CARB #1344 SAMPLE ID: 1500386-1 Date Sampled: 1/28/2015 Date Analyzed: 01/29/15 @ 1321 Lab Contact: J. Carstens

Meter:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.25	N/A	23.56		-	
Nitrogen	28.01	78.73	N/A	76.40		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.02	0.00	0.04		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9966	air = 1.0000				
Density, Calculated	•	1.2009	air – 1.205 Kg/m3				
• • • •	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.44			CHONS	Mole %	Wt%
					Carbon	0.03	0.01
Gross Calorific Value	9				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.27	23.58
BTU/ft ³ wet		0.0			Nitrogen Sulfur	78.70 0.00	76.40 0.00
Net Calorific Value						0.00	0.00
BTU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Calo	culate	
BTU/ft ³ wet		0.0		, , ,	SDCF/MMB		
Hydrogen Sulfide =	ND ppm						
All results reported a	ıt 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected NA: Not Analyzed				G/MCF: Gallons/	Thousand C	ubia Faat	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB018 Note: CARB #1344 SAMPLE ID: 1500386-2 Date Sampled: 1/28/2015 Date Analyzed: 01/29/15 @ 1356

Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.27	N/A	23.58		-	
Nitrogen	28.01	78.69	N/A	76.37		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9966	air = 1.0000				
Density, Calculated	•	1.2010	air – 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.45			CHONS Carbon	Mole % 0.04	Wt% 0.02
Gross Calorific Value	Э				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.30	23.62
BTU/ft ³ wet		0.0			Nitrogen	78.66	76.37
5. 5/10 WOL		0.0			Sulfur	0.00	0.00
Net Calorific Value						00	
BTU/ft ³ dry		0.0	EPA 'F' Facto	or (60°F, 1ATM)	Cannot Calo	culate	
BTU/ft ³ wet		0.0	2.7(1 1 400	(00 . , 17 (1 W))	SDCF/MMB		
Hydrogen Sulfide =	ND ppm						
All results reported a	it 60°F and 14.696 psia.						
Normalized values	·			SDCF:Standard	dry cubic fee	t	
ND: None Detected NA: Not Analyzed			G/MCF: Gallons/Thousand Cubic Feet				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB019 Note: CARB #1344 SAMPLE ID: 1500386-3 Date Sampled: 1/28/2015 Date Analyzed: 01/29/15 @ 1428 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.24	N/A	23.53		-	
Nitrogen	28.01	78.68	N/A	76.33		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.02	0.00	0.03		0.006	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.02	0.00	0.05		0.008	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.01	
Specific Gravity, Cal		0.9970	air = 1.0000				
Density, Calculated	Kg/m3	1.2014	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
3	ulated (60°F, 1ATM)	28.46			CHONS Carbon	Mole % 0.21	Wt% 0.09
Gross Calorific Value	9				Hydrogen	0.21	0.01
BTU/ft ³ dry		1.3			Oxygen	21.19	23.57
BTU/ft ³ wet		1.3			Nitrogen Sulfur	78.39 0.00	76.33 0.00
Net Calorific Value							
BTU/ft ³ dry		1.2	EPA 'F' Fact	or (60°F, 1ATM)	749210.8		
BTU/ft ³ wet		1.2		. (: ,)	SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not An	alvzed		G/MCF: Gallons/			

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB020 Note: CARB #1344 SAMPLE ID: 1500406-1 Date Sampled: 1/29/2015 Date Analyzed: 01/30/15 @ 1528

Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.12	N/A	23.42		-	
Nitrogen	28.01	78.80	N/A	76.50		-	
Hydrogen	2.01	0.00	0.00	0.00		=	
Carbon Dioxide	44.01	0.04	0.00	0.06		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.04	0.00	0.02		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9963	air = 1.0000				
Density, Calculated	•	1.2006	air – 1.205 Kg/m3				
	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.44			CHONS Carbon	Mole % 0.08	Wt% 0.03
Gross Calorific Value	е				Hydrogen	0.07	0.01
BTU/ft ³ dry		0.4			Oxygen	21.13	23.46
BTU/ft ³ wet		0.4			Nitrogen	78.71	76.50
DI O/IL WOL		0.4			Sulfur	0.00	0.00
Net Calorific Value						0.00	0.00
BTU/ft ³ dry		0.3	EPA 'F' Fact	or (60°F, 1ATM)	2694361.0		
BTU/ft ³ wet		0.3		•	SDCF/MMB	ΤU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic feet		
ND: None Detected	NA: Not An	alvzed	G/MCF: Gallons/Thousand Cubic Feet				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB021

Note: CARB #1344

SAMPLE ID: 1500406-2 Date Sampled: 1/29/2015 Date Analyzed: 01/30/15 @ 1602

Lab Contact: J. Carstens

Meter:

Pressure: psig ۰F Temperature:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.01	N/A	23.34		-	
Nitrogen	28.01	78.41	N/A	76.26		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.05	0.00	0.08		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.49	0.04	0.27		-	
Ethane	30.07	0.04	0.00	0.04		0.009	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.01	
Specific Gravity, Cal		0.9944	air = 1.0000				
Density, Calculated	•	1.1983	air – 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.38			CHONS	Mole %	Wt%
					Carbon	0.62	0.26
Gross Calorific Value	9				Hydrogen	1.07	0.08
BTU/ft ³ dry		5.6			Oxygen	20.82	23.40
BTU/ft ³ wet		5.5			Nitrogen Sulfur	77.49 0.00	76.26 0.00
Net Calorific Value							
BTU/ft ³ dry		5.0	EPA 'F' Fact	or (60°F, 1ATM)	186752 6		
BTU/ft ³ wet		4.9	/ dot	(, ,	SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	t 60°F and 14.696 psia.						
Normalized values	·			SDCF:Standard	dry cubic feet	:	
ND: None Detected NA: Not Analyzed				G/MCF: Gallons/	•		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB022 Note: CARB #1344 SAMPLE ID: 1500416-1 Date Sampled: 1/30/2015 Date Analyzed: 01/30/15 @ 1634 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	20.58	N/A	22.74		-	
Nitrogen	28.01	76.90	N/A	74.39		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.07	0.01	0.11		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.30	0.03	0.17		-	
Ethane	30.07	1.40	0.12	1.45		0.356	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.74	0.06	1.13		0.205	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.2	100.0	0.56		
Specific Gravity, Cal		0.9998	air = 1.0000				
Density, Calculated	•	1.2047	air – 1.205 Kg/m3				
	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.53			CHONS	Mole %	Wt%
					Carbon	4.89	2.24
Gross Calorific Valu	е				Hydrogen	7.02	0.54
BTU/ft ³ dry		46.5			Oxygen	18.65	22.83
STU/ft ³ wet		45.7			Nitrogen Sulfur	69.44 0.00	74.39 0.00
Net Calorific Value							
BTU/ft ³ dry		42.6	EPA 'F' Fact	or (60°F, 1ATM)	29616.8		
BTU/ft ³ wet		41.9		. (: ,)	SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected NA: Not Analyzed			G/MCF: Gallons/Thousand Cubic Feet				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: CARB

Description: TB023 Note: CARB #1344 SAMPLE ID: 1500416-2 Date Sampled: 1/30/2015 Date Analyzed: 01/30/15 @ 1706 Lab Contact: J. Carstens

Meter:

	Gas Analys	sis by Chr	omatography - A	STM D 1945/3	588		
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.12	N/A	23.42		-	
Nitrogen	28.01	78.84	N/A	76.52		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.06		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9965	air = 1.0000				
Density, Calculated	_	1.2007	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc Gross Calorific Value	ulated (60°F, 1ATM)	28.44			CHONS Carbon	Mole % 0.05 0.00	Wt% 0.02 0.00
31055 Caloniic valui BTU/ft ³ dry	5	0.0			Hydrogen		
		0.0			Oxygen	21.15	23.46
BTU/ft ³ wet		0.0			Nitrogen Sulfur	78.81 0.00	76.52 0.00
Net Calorific Value							
BTU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Calo	culate	
STU/ft ³ wet		0.0			SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	alyzed		G/MCF: Gallons/	Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Date Sampled: 2/23/2015 Date Analyzed: 02/24/15 @ 1449

Lab Contact: J. Carstens

SAMPLE ID: 1500806-1

Facility: -

Description: TB024A

Meter: Pressure:

psig

Note: CARB #1344

Temperature: - °F

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.53	N/A	23.86		-	
Nitrogen	28.01	78.45	N/A	76.10		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.02	0.00	0.03		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal	culated	0.9969	air = 1.0000				
Density, Calculated	Kg/m3	1.2013	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.45			CHONS Carbon	Mole % 0.03	Wt% 0.01
Gross Calorific Value	e				Hydrogen	0.00	0.00
BTU/ft ³ dry	-	0.0			Oxygen	21.55	23.88
BTU/ft ³ wet		0.0			Nitrogen	78.43	76.10
		0.0			Sulfur	18.43 0.00	0.00
Net Calorific Value							
3TU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Cald	culate	
STU/ft ³ wet		0.0		,	SDCF/MMB		
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not An	alvzed		G/MCF: Gallons/	Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

SAMPLE ID: 1500806-3 Date Sampled: 2/23/2015 Date Analyzed: 02/24/15 @ 1608 Lab Contact: J. Carstens

Meter:

Nietei. -

Pressure: - psig Temperature: - °F

Facility: -Description: TB025A

Note: CARB #1344

	Gas Analys	sis by Chr	omatography - A	STM D 1945/3	588		
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	20.85	N/A	23.43		_	
Nitrogen	28.01	75.97	N/A	74.73		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.06		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	3.14	0.27	1.77		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.3	100.0		0.00	
Specific Gravity, Cal		0.9831	air = 1.0000				
Density, Calculated	_	1.1847	air – 1.205 Kg/m3				
Compressibility (Z) F	-actor (60°F, 1ATM)	0.9996					
MW of fuel gas, cald	culated (60°F, 1ATM)	28.06			CHONS	Mole %	Wt%
Gross Calorific Valu	е				Carbon Hydrogen	3.00 5.91	1.35 0.45
BTU/ft ³ dry		31.8			Oxygen	19.64	23.47
BTU/ft ³ wet		31.2			Nitrogen	71.44	74.73
		31.2			Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		28.6	EPA 'F' Fact	tor (60°F, 1ATM)	38989.7		
BTU/ft ³ wet		28.1			SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	alyzed		G/MCF: Gallons/	Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Date Sampled: 2/24/2015 Date Analyzed: 02/25/15 @ 1819

Lab Contact: J. Carstens

SAMPLE ID: 1500835-1

Facility: -

Description: TB026A Note: CARB #1344 Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.52	N/A	23.86		_	
Nitrogen	28.01	78.36	N/A	76.04		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.06		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.08	0.01	0.04		_	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9967	air = 1.0000				
Density, Calculated	_	1.2010	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.45			CHONS	Mole %	Wt%
0-1	_				Carbon	0.13	0.05
Gross Calorific Value	9				Hydrogen	0.16	0.01
BTU/ft ³ dry		8.0			Oxygen	21.52	23.90
BTU/ft ³ wet		8.0			Nitrogen Sulfur	78.20 0.00	76.04 0.00
Net Calorific Value							
BTU/ft ³ dry		0.7	EPA 'F' Facto	or (60°F, 1ATM)	1263994.0		
3TU/ft ³ wet		0.7		. (: ,)	SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected NA: Not Analyzed			G/MCF: Gallons/Thousand Cubic Feet				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: -

Description: TB027A Note: CARB #1344 Date Analyzed: 02/25/15 @ 1847 Lab Contact: J. Carstens

SAMPLE ID: 1500835-2

Date Sampled: 2/24/2015

Meter: -Pressure: - psig

Temperature: - ^oF

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.57	N/A	23.90		_	
Nitrogen	28.01	78.39	N/A	76.03		_	
Hydrogen	2.01	0.00	0.00	0.00		_	
Carbon Dioxide	44.01	0.04	0.00	0.07		_	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal	culated	0.9971	air = 1.0000				
Density, Calculated	Kg/m3	1.2015	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc Gross Calorific Value	culated (60°F, 1ATM)	28.46			CHONS Carbon Hydrogen	Mole % 0.05 0.00	Wt% 0.02 0.00
BTU/ft ³ dry	•	0.0			Oxygen	21.60	23.95
BTU/ft ³ wet		0.0			Nitrogen	78.35	76.03
Net Calorific Value					Sulfur	0.00	0.00
BTU/ft ³ dry		0.0	EPA 'F' Fac	tor (60°F, 1ATM)	Cannot Cald	culate	
BTU/ft ³ wet		0.0			SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	llvzed		G/MCF: Gallons/	Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: -

Description: TB028A Note: CARB #1344 SAMPLE ID: 1500853-1 Date Sampled: 2/25/2015 Date Analyzed: 02/26/15 @ 1259

Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.46	N/A	23.80		-	
Nitrogen	28.01	78.29	N/A	76.03		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.02	0.00	0.03		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.23	0.02	0.13		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9959	air = 1.0000				
Density, Calculated	•	1.2000	air – 1.205 Kg/m3				
	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.42			CHONS	Mole %	Wt%
					Carbon	0.26	0.11
Gross Calorific Value	е				Hydrogen	0.46	0.03
BTU/ft ³ dry		2.3			Oxygen	21.37	23.83
BTU/ft ³ wet		2.3			Nitrogen Sulfur	77.91 0.00	76.03 0.00
Net Calorific Value							
BTU/ft ³ dry		2.1	EPA 'F' Fact	or (60°F, 1ATM)	438411.3		
BTU/ft ³ wet		2.1		•	SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not And	alvzed	G/MCF: Gallons/Thousand Cubic Feet				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: -

Description: TB029A Note: CARB #1344

Meter:

Pressure:

psig

۰F Temperature:

SAMPLE ID: 1500853-2

Lab Contact: J. Carstens

Date Sampled: 2/25/2015 Date Analyzed: 02/26/15 @ 1352

0	MW	Mala 0/*	1/ C/1/ f1*	Ma:		O/MOE*	
Component	IVIVV	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.35	N/A	23.76		-	
Nitrogen	28.01	77.72	N/A	75.70		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.04		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.90	0.08	0.50		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.1	100.0		0.00	
Specific Gravity, Cal	culated	0.9930	air = 1.0000				
Density, Calculated	Kg/m3	1.1966	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.34			CHONS	Mole %	Wt%
•	,				Carbon	0.92	0.39
Gross Calorific Value	е				Hydrogen	1.76	0.13
BTU/ft ³ dry		9.1			Oxygen	21.00	23.79
BTU/ft ³ wet		8.9			Nitrogen	76.33	75.70
2.5/it wot		0.0			Sulfur	0.00	0.00
Net Calorific Value				2			
BTU/ft ³ dry		8.2	EPA 'F' Fac	tor (60°F, 1ATM)			
BTU/ft ³ wet		8.0			SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	lvzed		G/MCF: Gallons/	Thousand Ci	ıbic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

SAMPLE ID: 1500870-1 Date Sampled: 2/26/2015 Date Analyzed: 02/27/15 @ 1444

Lab Contact: J. Carstens

Facility: -

Description: TB030A

Note: CARB #1344

Meter: - Pressure: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.56	N/A	23.89		-	
Nitrogen	28.01	78.40	N/A	76.04		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.07		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal	culated	0.9971	air = 1.0000				
Density, Calculated	-	1.2015	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.46			CHONS Carbon	Mole % 0.05	Wt% 0.02
Gross Calorific Valu	е				Hydrogen	0.00	0.00
3TU/ft ³ dry		0.0			Oxygen	21.59	23.93
BTU/ft ³ wet		0.0			Nitrogen	78.36	76.04
		0.0			Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Calo	culate	
BTU/ft ³ wet		0.0	/ dot	(55 . , . , . , . , . , . , . , . , . ,	SDCF/MMB		
Hydrogen Sulfide =	ND ppm						
	at 60°F and 14.696 psia.						
Normalized values	•			SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not An	alvzed		G/MCF: Gallons/	-		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Description: TB031A

Facility: -

Note: CARB #1344

SAMPLE ID: 1500870-2 Date Sampled: 2/26/2015 Date Analyzed: 02/27/15 @ 1520

Lab Contact: J. Carstens

Meter:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*		
Oxygen	32.00	21.35	N/A	23.77		-		
Nitrogen	28.01	77.52	N/A	75.56		-		
Hydrogen	2.01	0.00	0.00	0.00		-		
Carbon Dioxide	44.01	0.03	0.00	0.05		-		
Carbon Monoxide	28.01	0.00	N/A	0.00		-		
Methane	16.04	1.10	0.09	0.61		-		
Ethane	30.07	0.00	0.00	0.00		0.000		
Ethene	28.05	0.00	0.00	0.00		0.000		
Propane	44.10	0.00	0.00	0.00		0.000		
Propene	42.08	0.00	0.00	0.00		0.000		
i-Butane	58.12	0.00	0.00	0.00		0.000		
n-Butane	58.12	0.00	0.00	0.00		0.000		
neo-Pentane		0.00	0.00	0.00		0.000		
i-Pentane	72.15	0.00	0.00	0.00		0.000		
n-Pentane	72.15	0.00	0.00	0.00		0.000		
n-Hexane	86.18	0.00	0.00	0.00		0.000		
Hexanes Plus	86.18	0.00	0.00	0.00		0.000		
Totals		100.0	0.1	100.0		0.00		
Specific Gravity, Cal		0.9922	air = 1.0000					
Density, Calculated	_	1.1956	air – 1.205 Kg/m3					
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996						
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.32			CHONS	Mole %	Wt%	
					Carbon	1.11	0.48	
Gross Calorific Valu	е				Hydrogen	2.14	0.15	
BTU/ft ³ dry		11.1			Oxygen	20.91	23.81	
BTU/ft ³ wet		10.9			Nitrogen Sulfur	75.83 0.00	75.56 0.00	
Net Calorific Value								
BTU/ft ³ dry		10.0	EPA 'F' Fact	or (60°F, 1ATM)	97878.4			
BTU/ft ³ wet		9.8		•	SDCF/MMB	TU		
Hydrogen Sulfide =	ND ppm							
	at 60°F and 14.696 psia.							
* Normalized values				SDCF:Standard	dry cubic fee	t		
ND: None Detected	NA: Not Ana	alyzed	G/MCF: Gallons/Thousand Cubic Feet					

SAMPLE ID: 1500870-3

Lab Contact: J. Carstens

Date Analyzed: 02/27/15 @ 1551

psig °F

Date Sampled: 2/26/2015

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: -

Meter:

Description: TB032A Pressure: Note: CARB #1344 Temperature: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.54	N/A	23.89		-	
Nitrogen	28.01	78.21	N/A	75.93		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.22	0.02	0.12		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9961	air = 1.0000				
Density, Calculated	_	1.2003	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.43			CHONS Carbon	Mole % 0.26	Wt% 0.11
Gross Calorific Value	9				Hydrogen	0.44	0.03
BTU/ft ³ dry		2.2			Oxygen	21.47	23.92
BTU/ft ³ wet		2.2			Nitrogen	77.83	75.93
Net Calorific Value					Sulfur	0.00	0.00
BTU/ft ³ dry		2.0	EPA 'F' Facto	or (60°F, 1ATM)	452756.0		
3TU/ft ³ wet		2.0		,	SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	t 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not An	alvzed		G/MCF: Gallons/	Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: -

Description: TB033A Note: CARB #1344 SAMPLE ID: 1500906-1

Date Sampled: 3/2/2015

Date Analyzed: 03/03/15 @ 1215

Lab Contact: J. Carstens

Meter:

Pressure:

psig

۰F Temperature:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
•	32.00	20.92	N/A	23.16			
Oxygen Nitrogen	28.01	78.95	N/A N/A	76.52		-	
Hydrogen	2.01	0.00	0.00	0.00		<u>-</u>	
Carbon Dioxide	44.01	0.00	0.00	0.00		-	
Carbon Monoxide	28.01	0.02	N/A	0.00		-	
• • •	40.04		0.00				
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.07	0.01	0.16		0.024	
n-Pentane	72.15	0.05	0.00	0.12		0.018	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.04	
Specific Gravity, Cal	culated	0.9978	air = 1.0000				
Density, Calculated	Kg/m3	1.2024	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.48			CHONS	Mole %	Wt%
	,				Carbon	0.59	0.25
Gross Calorific Value	е				Hydrogen	0.68	0.05
BTU/ft ³ dry		4.6			Oxygen	20.70	23.18
BTU/ft ³ wet		4.5			Nitrogen	78.03	76.52
2.0,					Sulfur	0.00	0.00
Net Calorific Value				0			
BTU/ft ³ dry		4.3	EPA 'F' Fac	tor (60ºF, 1ATM)			
BTU/ft ³ wet		4.2			SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	llvzed		G/MCF: Gallons/	Thousand Cu	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

_

Description: TB034A Note: CARB #1344

Facility: -

SAMPLE ID: 1500906-2 Date Sampled: 3/2/2015 Date Analyzed: 03/03/15 @ 1427

Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.04	N/A	23.33		-	
Nitrogen	28.01	78.93	N/A	76.62		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.04		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9963	air = 1.0000				
Density, Calculated	•	1.2006	air – 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.44			CHONS Carbon	Mole % 0.04	Wt% 0.02
Gross Calorific Value	3				Hydrogen	0.00	0.00
BTU/ft ³ dry	-	0.0			Oxygen	21.06	23.37
BTU/ft ³ wet		0.0			Nitrogen	78.90	76.62
JIO/IL WEL		0.0			Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Calo	culate	
3TU/ft ³ wet		0.0		,	SDCF/MMB		
Hydrogen Sulfide =	ND ppm						
All results reported a	ıt 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected NA: Not Analyzed			G/MCF: Gallons/	Th	مادات المادات		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: -

Description: TB035A Note: CARB #1344 SAMPLE ID: 1500906-3 Date Sampled: 3/2/2015

Date Analyzed: 03/03/15 @ 1508

Lab Contact: J. Carstens

Meter: -

			omatography - A				
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.00	N/A	23.28		-	
Nitrogen	28.01	78.92	N/A	76.60		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.05	0.00	0.07		0.013	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.01	
Specific Gravity, Cal	culated	0.9965	air = 1.0000				
Density, Calculated	Kg/m3	1.2008	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.44			CHONS	Mole %	Wt%
,	, ,				Carbon	0.18	0.08
Gross Calorific Value	е				Hydrogen	0.19	0.01
BTU/ft ³ dry		1.2			Oxygen	20.96	23.32
BTU/ft ³ wet		1.2			Nitrogen	78.67	76.60
DTO/IL WCL		1.2			Sulfur	0.00	0.00
Net Calorific Value				_			
BTU/ft ³ dry		1.1	EPA 'F' Fact	tor (60°F, 1ATM)	843483.1		
BTU/ft ³ wet		1.1			SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	lyzed		G/MCF: Gallons	Thousand Cu	ıbic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Altri. David Randin

Facility: -

Description: TB036A Note: CARB #1344 SAMPLE ID: 1500906-4

Date Sampled: 3/2/2015

Date Analyzed: 03/03/15 @ 1538

Lab Contact: J. Carstens

Meter:

Pressure: -

Temperature: - °F

psig

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	20.95	N/A	23.23		-	
Nitrogen	28.01	79.04	N/A	76.74		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.02	0.00	0.02		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9961	air = 1.0000				
Density, Calculated	•	1.2003	air – 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.43			CHONS	Mole %	Wt%
					Carbon	0.02	0.01
Gross Calorific Value	9				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	20.96	23.25
BTU/ft ³ wet		0.0			Nitrogen Sulfur	79.02 0.00	76.74 0.00
Net Calorific Value					-		
BTU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Calo	culate	
STU/ft ³ wet		0.0		. (SDCF/MMB		
	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected NA: Not Analyzed		alvæd	G/MCF: Gallons/Thousand Cubic Feet				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

SAMPLE ID: 1500918-1 Date Sampled: 3/3/2015

Date Analyzed: 03/05/15 @ 1026

Lab Contact: J. Carstens

Facility: - Meter:

Description: TB037A Pressure: - psig
Note: CARB #1344 Temperature: - °F

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.14	N/A	23.43		-	
Nitrogen	28.01	78.80	N/A	76.47		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.04	0.00	0.06		0.010	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.01	
Specific Gravity, Cal		0.9967	air = 1.0000				
Density, Calculated	•	1.2010	air – 1.205 Kg/m3				
	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, cald	culated (60°F, 1ATM)	28.45			CHONS Carbon	Mole % 0.15	Wt% 0.06
Gross Calorific Valu	е				Hydrogen	0.14	0.01
BTU/ft ³ dry	-	0.9			Oxygen	21.11	23.46
BTU/ft ³ wet		0.9			Nitrogen	78.60	76.47
DIO/IL WEL		0.9			Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		0.8	EPA 'F' Fact	or (60°F, 1ATM)	1107207.7		
BTU/ft ³ wet		0.8		·	SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic feet	•	
ND: None Detected	NA: Not And	alvzed		G/MCF: Gallons/	Thousand Cu	ıbic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: -

Description: TB038A

Note: CARB #1344

SAMPLE ID: 1500918-2

Date Sampled: 3/3/2015

Date Analyzed: 03/05/15 @ 1100

Lab Contact: J. Carstens

Meter:

Pressure: psig ۰F Temperature:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.17	N/A	23.47		-	
Nitrogen	28.01	78.80	N/A	76.49		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.04		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9965	air = 1.0000				
Density, Calculated	_	1.2008	air – 1.205 Kg/m3				
Compressibility (Z) F	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.44			CHONS Carbon	Mole % 0.04	Wt% 0.01
Gross Calorific Value	9				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.19	23.50
BTU/ft ³ wet		0.0			Nitrogen Sulfur	78.78 0.00	76.49 0.00
Net Calorific Value							0.00
BTU/ft ³ dry		0.0	EPA 'F' Fact	tor (60°F, 1ATM)	Cannot Cald	culate	
3TU/ft ³ wet		0.0		·	SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	t 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected NA: Not Analyzed			G/MCF: Gallons/				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: -

Description: TB039A Note: CARB #1344 SAMPLE ID: 1500918-3 Date Sampled: 3/3/2015

Date Analyzed: 03/05/15 @ 1129

Lab Contact: J. Carstens

Meter:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.17	N/A	23.47		-	
Nitrogen	28.01	78.80	N/A	76.48		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9965	air = 1.0000				
Density, Calculated	_	1.2008	air – 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.44			CHONS	Mole %	Wt%
					Carbon	0.04	0.02
Gross Calorific Value	е				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.19	23.50
BTU/ft ³ wet		0.0			Nitrogen Sulfur	78.77 0.00	76.48 0.00
Net Calorific Value							0.00
BTU/ft ³ dry		0.0	EPA 'F' Fac	tor (60°F, 1ATM)	Cannot Cald	culate	
BTU/ft ³ wet		0.0			SDCF/MMB	TU	
Hydrogen Sulfide =	ND ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	lyzed		G/MCF: Gallons/	Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: GUISTI 20-2, GOU 32-8/32-9

Description: TB 040B Note: CARB #1344 SAMPLE ID: 1503374-2 Date Sampled: 8/6/2015

Date Analyzed: 08/07/15 @ 1230 Lab Contact: J. Carstens

Meter:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	19.46	N/A	22.32		-	
Nitrogen	28.01	72.99	N/A	73.29		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	7.50	0.65	4.31		-	
Ethane	30.07	0.02	0.00	0.03		0.006	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.7	100.0		0.01	
Specific Gravity, Cal		0.9632	air = 1.0000				
Density, Calculated	•	1.1606	air = 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	27.49			CHONS	Mole %	Wt%
Gross Calorific Value	<u> </u>				Carbon Hydrogen	6.59 13.08	3.26 1.09
BTU/ft ³ dry		76.1			Oxygen	16.93	22.35
BTU/ft ³ wet		74.8			Nitrogen	63.40	73.29
STONE WEE		74.0			Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		68.6	EPA 'F' Fact	or (60°F, 1ATM)	20633.2		
BTU/ft ³ wet		67.4		,	SDCF/MMB	TU	
Hydrogen Sulfide =	NA ppm						
, ,	nt 60°F and 14.696 psia.						
Normalized values	<u>.</u>			SDCF:Standard	dry cubic fee	t	
ND: None Detected NA: Not Analyzed		alvzod		G/MCF: Gallons/	•		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: GUISTI 20-2, GOU 32-8/32-9

Description: TB 041B Note: CARB #1344 SAMPLE ID: 1503374-4

Date Sampled: 8/6/2015

Date Analyzed: 08/07/15 @ 1258

Lab Contact: J. Carstens

Meter:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.02	N/A	23.34		-	
Nitrogen	28.01	78.63	N/A	76.43		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.31	0.03	0.17		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9950	air = 1.0000				
Density, Calculated	•	1.1990	air = 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.40			CHONS	Mole %	Wt%
0 1 15 11					Carbon	0.35	0.15
Gross Calorific Value	e				Hydrogen	0.62	0.04
BTU/ft ³ dry		3.2			Oxygen	20.91	23.38
BTU/ft ³ wet		3.1			Nitrogen Sulfur	78.12 0.00	76.43 0.00
Net Calorific Value					Cullul	0.00	0.00
BTU/ft ³ dry		2.8	EPA 'F' Fact	or (60°F, 1ATM)	324702.6		
BTU/ft ³ wet		2.8		•	SDCF/MMB	TU	
Hydrogen Sulfide =	NA ppm						
All results reported a	nt 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not An	alvzed		G/MCF: Gallons/	Thousand C	uhic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: SANBORN #4,19-8,19-10,30-10,25-17,30-6

Description: TB 042B Note: CARB #1344 SAMPLE ID: 1503396-2 Date Sampled: 8/7/2015

Date Analyzed: 08/08/15 @ 1059

Lab Contact: J. Carstens

Meter: -

	Gas Analys	is by Chr	omatography - A	STM D 1945/3	588		
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.31	N/A	23.73		-	
Nitrogen	28.01	77.61	N/A	75.64		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.02	0.00	0.04		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	1.06	0.09	0.59		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.1	100.0		0.00	
Specific Gravity, Cal		0.9923	air = 1.0000				
Density, Calculated	_	1.1957	air = 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.32			CHONS	Mole %	Wt%
					Carbon	1.07	0.46
Gross Calorific Valu	e				Hydrogen	2.07	0.15
BTU/ft ³ dry		10.7			Oxygen	20.89	23.76
BTU/ft ³ wet		10.5			Nitrogen	75.97	75.64
					Sulfur	0.00	0.00
Net Calorific Value							
3TU/ft ³ dry		9.6	EPA 'F' Fact	tor (60°F, 1ATM)	101128.4		
BTU/ft ³ wet		9.4		, , ,	SDCF/MMB	TU	
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	<u> </u>	
ND: None Detected	NA: Not Ana	alyzed		G/MCF: Gallons	-		

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: SANBORN #4,19-8,19-10,30-10,25-17,30-6

Description: TB 043B Note: CARB #1344 SAMPLE ID: 1503396-4

Date Sampled: 8/7/2015

Date Analyzed: 08/08/15 @ 1130

Lab Contact: J. Carstens

Meter:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.49	N/A	23.81		-	
Nitrogen	28.01	78.49	N/A	76.15		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.02	0.00	0.04		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9969	air = 1.0000				
Density, Calculated	_	1.2013	air = 1.205 Kg/m3				
Compressibility (Z) F	•	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.45			CHONS	Mole %	Wt%
					Carbon	0.03	0.01
Gross Calorific Valu	9				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.50	23.84
BTU/ft ³ wet		0.0			Nitrogen	78.46	76.15
					Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Cald	culate	
BTU/ft ³ wet		0.0			SDCF/MMB	TU	
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected NA: Not Analyzed		alvzod		G/MCF: Gallons/	Thousand C	ubio Ecot	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 044A Note: CARB #1344 SAMPLE ID: 1503434-1 Date Sampled: 8/11/2015 Date Analyzed: 08/12/15 @ 1119 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.41	N/A	23.73		-	
Nitrogen	28.01	78.56	N/A	76.22		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9968	air = 1.0000				
Density, Calculated	•	1.2012	air = 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.45			CHONS	Mole %	Wt%
Gross Calorific Value	Δ				Carbon Hydrogen	0.04 0.00	0.02 0.00
3TU/ft ³ dry	•	0.0			Oxygen	21.44	23.77
BTU/ft ³ wet		0.0				78.53	76.22
31U/π wet		0.0			Nitrogen Sulfur	78.53 0.00	0.00
Net Calorific Value							
3TU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Cald	culate	
BTU/ft ³ wet		0.0			SDCF/MMB	TU	
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	alvzed		G/MCF: Gallons/	Thousand C	uhic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 045A Note: CARB #1344 SAMPLE ID: 1503434-2 Date Sampled: 8/11/2015 Date Analyzed: 08/12/15 @ 1221 Lab Contact: J. Carstens

Meter: -

	Gas Analys	is by Chr	omatography - A	ASTM D 1945/3	588		
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.39	N/A	23.70		_	
Nitrogen	28.01	78.58	N/A	76.25		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9968	air = 1.0000				
Density, Calculated	Kg/m3	1.2011	air = 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.45			CHONS Carbon	Mole % 0.04	Wt% 0.02
Gross Calorific Value	е				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.41	23.74
BTU/ft ³ wet		0.0			Nitrogen	78.55	76.25
Net Calorific Value					Sulfur	0.00	0.00
BTU/ft ³ dry		0.0	EPA 'F' Fac	ctor (60°F, 1ATM)	Cannot Cald	culate	
BTU/ft ³ wet		0.0			SDCF/MMB	TU	
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	lyzed		G/MCF: Gallons	Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 046A Note: CARB #1344 SAMPLE ID: 1503463-1 Date Sampled: 8/12/2015 Date Analyzed: 08/13/15 @ 1013 Lab Contact: J. Carstens

Meter:

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.19	N/A	23.50		-	
Nitrogen	28.01	78.71	N/A	76.40		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.06		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.06	0.00	0.03		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9963	air = 1.0000				
Density, Calculated	•	1.2006	air = 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.44			CHONS	Mole %	Wt%
					Carbon	0.11	0.04
Gross Calorific Valu	9				Hydrogen	0.12	0.01
BTU/ft ³ dry		0.6			Oxygen	21.20	23.54
BTU/ft ³ wet		0.6			Nitrogen	78.58	76.40
Net Calorific Value					Sulfur	0.00	0.00
BTU/ft ³ dry		0.5	EPA 'F' Fact	or (60°F, 1ATM)	1664595.7		
BTU/ft ³ wet		0.5		·	SDCF/MMB	TU	
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not An	alvzed		G/MCF: Gallons/	Thousand Ci	ibic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 047A Note: CARB #1344 SAMPLE ID: 1503463-2 Date Sampled: 8/12/2015 Date Analyzed: 08/13/15 @ 1039 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.19	N/A	23.50		-	
Nitrogen	28.01	78.77	N/A	76.45		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Ca		0.9965	air = 1.0000				
Density, Calculated	_	1.2008	air = 1.205 Kg/m3				
	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, cald	culated (60°F, 1ATM)	28.44			CHONS Carbon	Mole % 0.04	Wt% 0.02
Gross Calorific Valu	е				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.22	23.53
BTU/ft ³ wet		0.0			Nitrogen	78.74	76.45
					Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		0.0	EPA 'F' Facto	or (60°F, 1ATM)	Cannot Calo	culate	
BTU/ft ³ wet		0.0		, , , , , , ,	SDCF/MMB		
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
* Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not An	alvzed		G/MCF: Gallons/	Thousand C	ubic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 048A Note: CARB #1344 SAMPLE ID: 1503463-3 Date Sampled: 8/12/2015 Date Analyzed: 08/13/15 @ 1058

Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.10	N/A	23.43		-	
Nitrogen	28.01	78.46	N/A	76.28		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.04	0.00	0.07		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.40	0.03	0.22		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9948	air = 1.0000				
Density, Calculated	•	1.1988	air = 1.205 Kg/m3				
Compressibility (Z) F	,	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.39			CHONS	Mole %	Wt%
					Carbon	0.45	0.19
Gross Calorific Value	Э				Hydrogen	0.79	0.06
BTU/ft ³ dry		4.0			Oxygen	20.96	23.48
BTU/ft ³ wet		4.0			Nitrogen	77.80	76.28
					Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		3.6	EPA 'F' Fact	or (60°F, 1ATM)	254811.0		
BTU/ft ³ wet		3.6		, ,	SDCF/MMB	TU	
Hydrogen Sulfide =	NA ppm					-	
All results reported a	it 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic feet	<u></u>	
ND: None Detected NA: Not Analyzed			G/MCF: Gallons/Thousand Cubic Feet				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 049A Note: CARB #1344 SAMPLE ID: 1503485-1 Date Sampled: 8/13/2015 Date Analyzed: 08/14/15 @ 1130 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.29	N/A	23.61		-	
Nitrogen	28.01	78.60	N/A	76.30		-	
Hydrogen	2.01	0.00	0.00	0.00		=	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.08	0.01	0.04		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9964	air = 1.0000				
Density, Calculated	•	1.2006	air = 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.44			CHONS	Mole %	Wt%
					Carbon	0.12	0.05
Gross Calorific Value	9				Hydrogen	0.15	0.01
BTU/ft ³ dry		8.0			Oxygen	21.28	23.64
BTU/ft ³ wet		0.8			Nitrogen Sulfur	78.45 0.00	76.30 0.00
Net Calorific Value					Sullui	0.00	0.00
BTU/ft ³ dry		0.7	EPA 'F' Fact	or (60°F, 1ATM)	1299805.7		
3TU/ft ³ wet		0.7			SDCF/MMB7	ΓU	
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic feet		
ND: None Detected NA: Not Analyzed			G/MCF: Gallons/				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 050A Note: CARB #1344 SAMPLE ID: 1503485-2 Date Sampled: 8/13/2015 Date Analyzed: 08/14/15 @ 1226 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.31	N/A	23.62		-	
Nitrogen	28.01	78.66	N/A	76.32		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9967	air = 1.0000				
Density, Calculated	•	1.2010	air = 1.205 Kg/m3				
	actor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.45			CHONS	Mole %	Wt%
					Carbon	0.04	0.02
Gross Calorific Value	9				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.34	23.66
BTU/ft ³ wet		0.0			Nitrogen Sulfur	78.62 0.00	76.32 0.00
Net Calorific Value					- *****	2.00	
3TU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Cald	culate	
BTU/ft ³ wet		0.0		, ,	SDCF/MMB		
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not Ana	alvzed		G/MCF: Gallons/	Thousand C	uhic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 051A Note: CARB #1344 SAMPLE ID: 1503504-1 Date Sampled: 8/14/2015 Date Analyzed: 08/15/15 @ 1132 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.39	N/A	23.71		-	
Nitrogen	28.01	78.58	N/A	76.25		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.03	0.00	0.05		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.00	0.00	0.00		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Cal		0.9968	air = 1.0000				
Density, Calculated	•	1.2011	air = 1.205 Kg/m3				
	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	ulated (60°F, 1ATM)	28.45			CHONS	Mole %	Wt%
					Carbon	0.04	0.02
Gross Calorific Valu	е				Hydrogen	0.00	0.00
BTU/ft ³ dry		0.0			Oxygen	21.41	23.74
BTU/ft ³ wet		0.0			Nitrogen Sulfur	78.55 0.00	76.25 0.00
Net Calorific Value							
3TU/ft ³ dry		0.0	EPA 'F' Fact	or (60°F, 1ATM)	Cannot Cald	culate	
BTU/ft ³ wet		0.0		•	SDCF/MMB		
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic fee	t	
ND: None Detected	NA: Not An	alvzed	G/MCF: Gallons/Thousand Cubic Feet				

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 052A Note: CARB #1344 SAMPLE ID: 1503504-2 Date Sampled: 8/14/2015 Date Analyzed: 08/15/15 @ 1201 Lab Contact: J. Carstens

Meter: -

Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.16	N/A	23.55		-	
Nitrogen	28.01	77.86	N/A	75.88		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.02	0.00	0.03		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.96	0.08	0.54		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.1	100.0		0.00	
Specific Gravity, Cal		0.9924	air = 1.0000				
Density, Calculated	•	1.1959	air = 1.205 Kg/m3				
	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calc	culated (60°F, 1ATM)	28.33			CHONS Carbon	Mole % 0.97	Wt% 0.41
Gross Calorific Value	e				Hydrogen	1.88	0.13
BTU/ft ³ dry		9.7			Oxygen	20.77	23.57
3TU/ft ³ wet		9.5			Nitrogen	76.38	75.88
DIO/IL WEL		3.0			Sulfur	0.00	0.00
Net Calorific Value							
3TU/ft ³ dry		8.7	EPA 'F' Fact	or (60°F, 1ATM)	110596.4		
3TU/ft ³ wet		8.6		•	SDCF/MMB	TU	
Hydrogen Sulfide =	NA ppm						
All results reported a	at 60°F and 14.696 psia.						
Normalized values				SDCF:Standard	dry cubic feet	t	
ND: None Detected NA: Not Analyzed		alvzed		G/MCF: Gallons/	Thousand Ci	ihic Feet	

Client: Sage Environmental Consulting, LP

4611 Bee Caves Road Suite 100

Austin, Texas 78746

Attn: David Ranum

Facility: Feather River AQMD

Description: TB 053A Note: CARB #1344 SAMPLE ID: 1503504-3 Date Sampled: 8/14/2015 Date Analyzed: 08/15/15 @ 1229 Lab Contact: J. Carstens

Meter:

Gas Analysis by Chromatography - ASTM D 1945/3588							
Component	MW	Mole %*	Kg-C/Kg-fuel*	Weight %*		G/MCF*	
Oxygen	32.00	21.17	N/A	23.53		-	
Nitrogen	28.01	78.28	N/A	76.14		-	
Hydrogen	2.01	0.00	0.00	0.00		-	
Carbon Dioxide	44.01	0.02	0.00	0.04		-	
Carbon Monoxide	28.01	0.00	N/A	0.00		-	
Methane	16.04	0.53	0.04	0.29		-	
Ethane	30.07	0.00	0.00	0.00		0.000	
Ethene	28.05	0.00	0.00	0.00		0.000	
Propane	44.10	0.00	0.00	0.00		0.000	
Propene	42.08	0.00	0.00	0.00		0.000	
i-Butane	58.12	0.00	0.00	0.00		0.000	
n-Butane	58.12	0.00	0.00	0.00		0.000	
neo-Pentane		0.00	0.00	0.00		0.000	
i-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Pentane	72.15	0.00	0.00	0.00		0.000	
n-Hexane	86.18	0.00	0.00	0.00		0.000	
Hexanes Plus	86.18	0.00	0.00	0.00		0.000	
Totals		100.0	0.0	100.0		0.00	
Specific Gravity, Calculated		0.9943	air = 1.0000				
Density, Calculated Kg/m3		1.1981	air = 1.205 Kg/m3				
Compressibility (Z) F	Factor (60°F, 1ATM)	0.9996					
MW of fuel gas, calculated (60°F, 1ATM)		28.38			CHONS	Mole %	Wt%
0	, ,				Carbon	0.55	0.23
Gross Calorific Value	е				Hydrogen	1.04	0.07
BTU/ft ³ dry		5.3			Oxygen	20.97	23.55
BTU/ft ³ wet		5.2			Nitrogen	77.44	76.14
2.0,		0.2			Sulfur	0.00	0.00
Net Calorific Value							
BTU/ft ³ dry		4.8	EPA 'F' Fa	ctor (60°F, 1ATM)	195886.6		
BTU/ft ³ wet		4.7		SDCF/MMBTU			
Hydrogen Sulfide =	NA ppm						
•	at 60°F and 14.696 psia.						
* Normalized values			SDCF:Standard dry cubic feet				
ND: None Detected NA: Not Analyzed			G/MCF: Gallons/Thousand Cubic Feet				