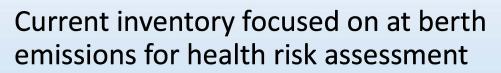
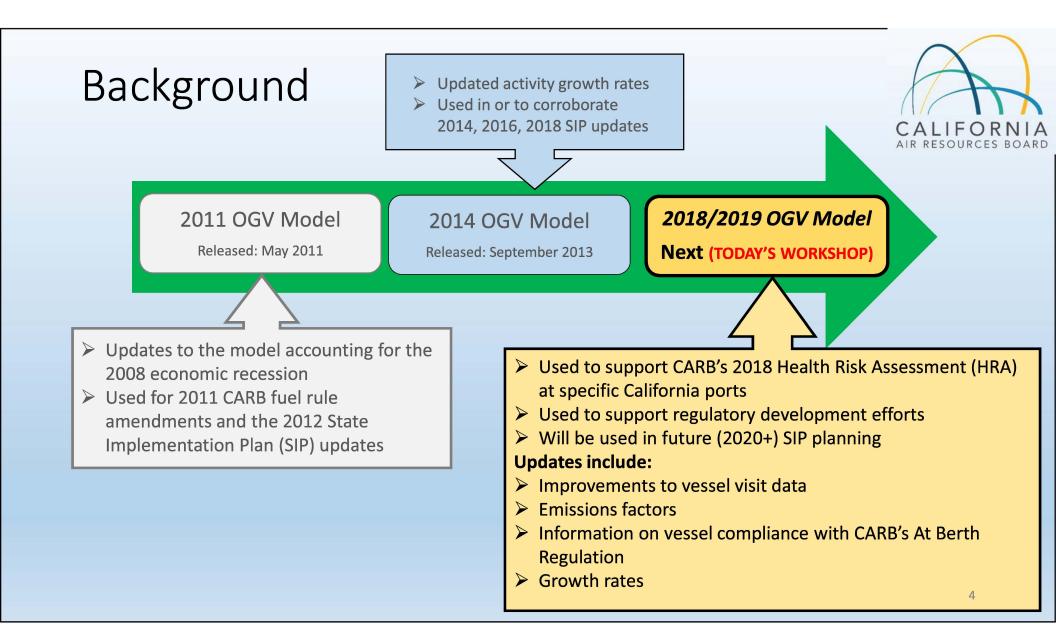
Updates to At Berth Emissions Inventory for Ocean-Going Vessels (OGV)

Mobile Source Analysis Branch California Air Resources Board February 26, 2019


Ocean-Going Vessel Inventory: Outline

- Introduction & Background
- Inventory Methodology
- Base Year Inputs
- Growth and Forecasting
- Shorepower
- Emission Factors
- Emissions and Results

For a copy of this presentation; https://www.arb.ca.gov/msei/ordiesel/feb19ogvinv.pdf


Introduction

Ocean-going vessels covered by this inventory are;

- Over 400 feet, 10,000 tons, large engine displacement
- Visit CA port or marine terminal complex (MTC) at least once
- Significant source of emissions around the ports and coastal shipping lanes

Vessel Categories Vessel Types Vessels are grouped by category / function Auto Containers and tankers further grouped by vessel size **Bulk Cargo** (1000s of TEUs (containers) / gross tonnage of tanker) Container • Engines grouped by main (propulsion), auxiliary (provide electric power), and boilers (heat, pumping, Cruise producing inert gas) **General Cargo** At berth emissions include auxiliary engine and boiler **Reefers** emissions, not main engines

Ro-Ro

Tankers

5

Data Sources

- Vessel visits and vessel information
 - IHS-Markit data and
 - South Coast Marine Exchange
- Growth rates
 - Freight Analysis Framework (FAF)
 - Mercator Report for Ports of LA/LB
- Marine engine tier forecast
 - San Pedro Bay Clean Air Action Plan: Delayed expected introduction of Tier 3 marine engines to 2030 -2040, based on a study of Ports of LA/LB,
- Effective power (load factor)
 - Data from the vessel boarding program (VBP) in the Ports of LA/LB
- Shorepower time or emissions reduction
 - ARB Enforcement Division audit data

Method Overview

Base Year (2016)

1. Base Year Vessel Visits (Vessel type, size, port, model year, length of visit)

2. Determine Effective Power of Engines

3. Determine Engine Tier/Emission Factor Based on Model Year

4. Determine Reduction in Engine Activity Time from Current and Proposed Regulatory Programs

Forecast (2017 – 2050)

5. Growth Forecast based on Port of Visit

6. Determine Future Reduction from Regulatory Programs

7. Estimate Future Year Engine Tier Introduction Dates

Summary: Emissions Calculation (1)

• Emissions are calculated for each engine, for each vessel visit

Emissions per Visit = Activity (hours) x Effective Power x Emission Factor (g/kW-hr)

Base Emissions Inventory = Sum of Emissions Per Visit

• Existing regulatory program reductions (i.e., reduction in activity or reduction in emissions) are applied to aggregated vessel visits

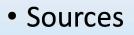
Summary: Emissions Calculation (2)

The inputs to each vessel visit calculation will differ due to the following:

- Activity: Time the engine or boiler is running (hours)
 - Visit hours reported for each individual vessel visit
- Effective Power: average power output for an engine (kW) by:
 - Vessel Type
 - Vessel Size
- Emission factor (grams of pollutant/kW-hr):
 - Engine Tier
 - Fuel type
 - Source type (e.g., boiler, auxiliary)
 - **Pollutants** (Nox, PM, PM10, PM2.5, Diesel PM, CH4, N2O, NH3, ROG, CO, SOx, HC, CO2, TOG)

Summary: Emission Calculation (3)

- Forecasting Future years will add a growth factor to the calculation, specific to:
 - Vessel type
 - Port
 - Vessel size
- Forecasting can change the emission factors used based on:
 - Engine age
 - Engine tier introduction date


Base Year Inputs

ALIFORNIA RESOURCES BOARD

AIR

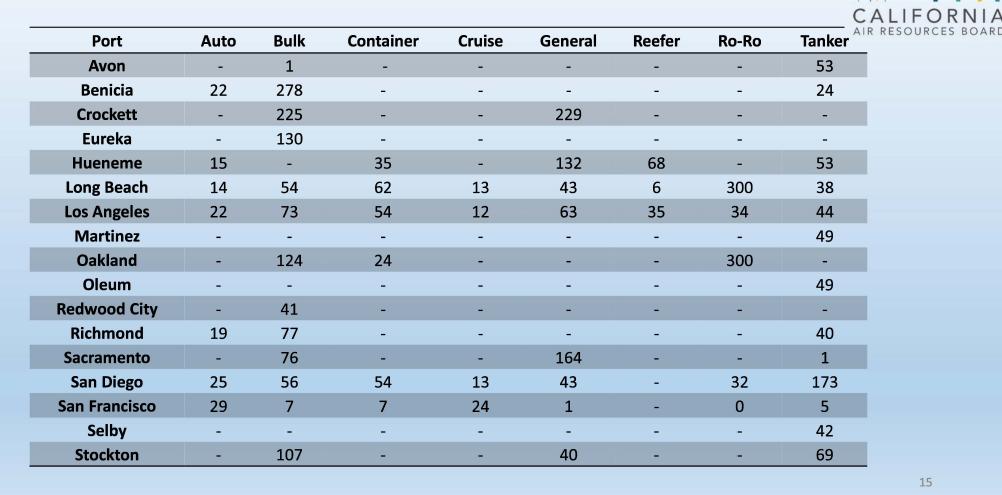
OGV Base Year Inputs –Vessel Visits

- 2016 IHS-Markit at berth times for California
- 2016 South Coast Marine Exchange arrival and departure data
- Information used for emissions calculation
 - Vessel IMO number (for identifying vessel characteristics)
 - Port of call
 - Berth at port (if provided)
 - In port mode (only reflecting at berth emissions)
 - Length of visit

Vessel Visits - Length - Effective Power - Engine Tier - Growth - Shorepower - Emission Factor

Number of Visits by Port and Vessel Type (Calendar Year 2016)

									AIK RESOURCES
Port	Auto	Bulk	Container	Cruise	General	Reefer	Ro-Ro	Tanker	Grand Total
Avon	-	1	-	-	-	-	-	69	70
Benicia	126	11	-	-	-	-	-	88	225
Crockett	-	14	-	-	3	-	-	-	17
Eureka	-	6	-	-	-	-	-	-	6
Hueneme	262	-	68	-	3	52	-	12	397
Long Beach	186	199	948	258	28	1	2	443	2,065
Los Angeles	83	89	1,291	118	47	17	24	236	1,905
Martinez	-	-	-	-	-	-	-	161	161
Oakland	-	19	1,711	-	-	-	1	-	1,731
Oleum	-	-	-	-	-	-	-	78	78
Redwood City	-	55	-	-	-	-	-	-	55
Richmond	110	72	-	-	-	-	-	409	591
Sacramento	-	18	-	-	12	-	-	1	31
San Diego	251	6	62	73	21	-	6	16	435
San Francisco	6	58	92	79	3	-	1	70	309
Selby	-	-	-	-	-	-	-	31	31
Stockton	-	107	-	-	40	-	-	69	216
Grand Total	1,024	655	4,172	528	157	70	34	1,683	8,323



Vessel Visit Length

- Vessel visit length is specified for each vessel visit by Marine Exchange and/or AIS data (IHS-Markit data)
- The auxiliary engines and boilers are both assumed to be active over the vessel visit
 - Effective power uses average engine power over length of a vessel visit

Vessel Visits - Length - Effective Power - Engine Tier - Growth - Shorepower - Emission Factor

2016 Average Length of Vessel Visits (hours)



Engine Effective Power

- Effective power is combination of maximum power and the average load factor
 - Based on the Starcrest's Vessel Boarding Program (referred to as load factor)
 - Weighted average between the Ports of LA and LB and used for all other ports
- For Auxiliary engines and boilers only (not main engines)

Vessel Visits - Length - Effective Power - Engine Tier - Growth - Shorepower - Emission Factor

• Container (size bin)

Size Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	17	18
kW	709	1036	597	1153	1007	988	2326	951	973	1122	1500	1945	990	1500	1000	1000

Tanker

Vessel Type	Seawaymax	Panamax	Aframax	Suezmax	VLCC	ULCC
kW	784	654	724	2509	1171	1171

• Other Vessel Types

Vessel Type	Auto	Bulk	Bulk - Self Discharging	Cruise	General	Misc	Reefer	Ro-Ro
kW	1159	190	179	5620	661	228	900	711

Engine Effective Power – Auxiliary Boilers

• Container (size bin)

Size Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	17	18
kW	273	361	420	477	579	615	623	668	677	581	790	790	612	612	647	647

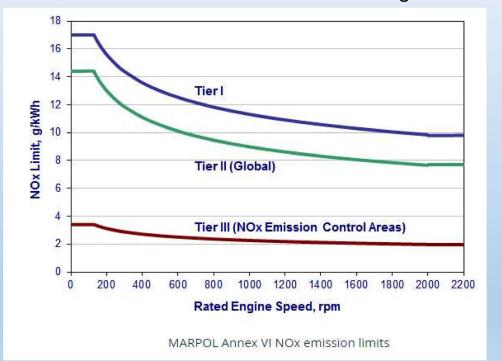
Tanker

Vessel Type	Seawaymax	Panamax	Aframax	Suezmax	VLCC	ULCC
kW	2586	3421	5030	5843	6000	6000

Other Vessel Types

Vessel Type	Auto	Bulk	Bulk - Self Discharging	Cruise	General	Misc	Reefer	Ro-Ro
kW	314	125	132	612	160	96	304	259

Effective Engine Power: Tankers


- ▲ Upcoming inventory improvement: Split effective power for tanker with steam-powered pumps based on on-loading vs off-loading product
 - Effective power for on-loading is ~800 to 900 kW per boiler
 - Effective power for off-loading is 2,500 to 6,000 kW per boiler depending on vessel size

Currently reviewing available data for receiving vs off-loading product times and activity

Marine Engine Tier

- Marine engine standards divided into three engine Tiers
- Engine tiers based on keel laid date of vessel (not engine model year)
- Engine tiers are focused on NOx emissions reductions
- Significant NOx reductions with Tier 3 marine engine standards

IMO NOx Standards for Cat. 3 Marine Engines

Vessel Visits - Length - Effective Power - Engine Tier - Growth - Shorepower - Emission Factor

Forecasting and Growth

Tier and Age Distribution Forecasting

- Tier introduction / arrival dates for California ports based on a study by Starcrest for Ports of LA/LB
- Tier 3 marine engines are not expected until 2030 to 2040 (Starcrest, 2017)
 - Significant increase in keels laid prior to Tier 3 standard
 - Incorporates delay in California receiving visits from newer vessels compared to Asia / Europe

Age Distribution Forecasting

- Age distribution held static from base year
- Model year and engine tier change over time, but average age and age distribution stay constant
- Attrition or turnover model not used due to lack of captive fleet that would follow turnover curve

Example

Assume that 2016 data shows a specific vessel visit with keel laid of 1995 then:

- Forecast year of 2017 would show that vessel visit with keel laid year of 1996
- Forecast year of 2018 would show that vessel visit with keel laid year of 1997

Activity Growth

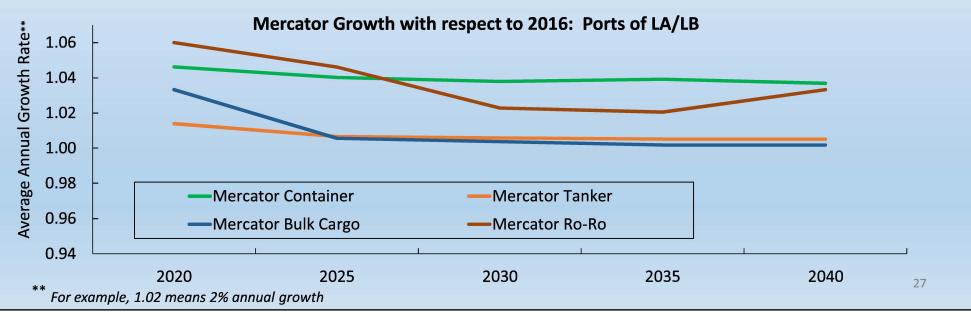
- Growth is based on:
 - Freight Analysis Framework (FAF)
 - Mercator forecast for Ports of LA/LB
 - Port specific data for Port of Hueneme
- Growth factors are specific to:
 - a) Vessel type
 - b) Port
 - c) Vessel size
 - d) Forecast year

Vessel Visits - Length - Effective Power - Engine Tier - Growth - Shorepower - Emission Factor

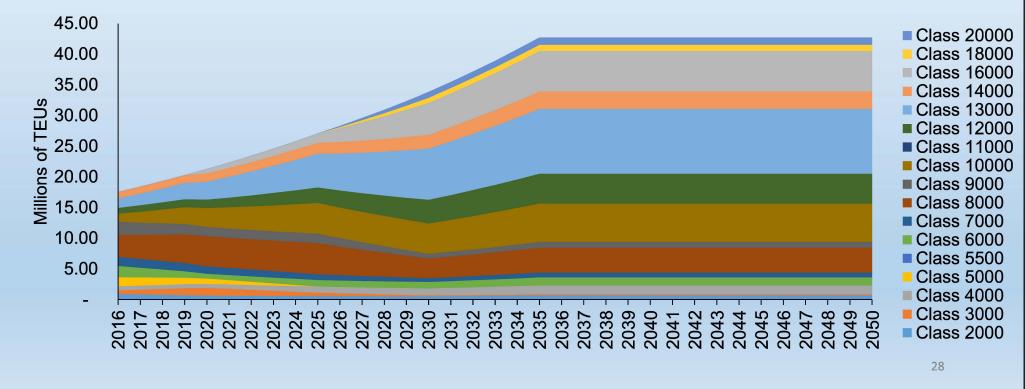
Activity Growth Factors: FAF Version 4.3.1

25

- Based on 2016 FAF database
 - Developed by Bureau of Transportation Statistics (BTS) and Federal Highway Administration (FHWA)
 - FAF forecasts cargo movements in tons
 - Forecasts are specific to regions and commodity groups


FAF #	California Port	FAF Region
8	Avalon/Catalina	Los Angeles CA CSA
8	POLA	Los Angeles CA CSA
8	POLB	Los Angeles CA CSA
8	LA-LB	Los Angeles CA CSA
11	POak	San Francisco CA CSA
9	POSD	San Diego CA CSA
11	POSF	San Francisco CA CSA
10	Stockton	Sacramento CA-NV CSA
10	Sacramento	Sacramento CA-NV CSA
11	Richmond	San Francisco CA CSA
11	Carquinez	San Francisco CA CSA
8	El Segundo	Los Angeles CA CSA
12	Humboldt	Remainder of CA
12	Monterey	Remainder of CA
8	Hueneme	Los Angeles CA CSA
12	Redwood	San Francisco CA CSA


	Region	Vessel Type	Average Annual Growth (percent)
FAF Activity Growth	Los Angeles	Auto	2.8
TAT ACTIVITY OTOWER	Los Angeles	Bulk cargo	3.2
	Los Angeles	Container	4.5
	Los Angeles	General cargo	4.9
	Los Angeles	Reefer	4.1
 Growth rates vary slightly over 	Los Angeles	Ro-Ro	4.9
	Los Angeles	Tanker	1.5
time between 2016 and 2050,	Rest of California	Bulk cargo	4.0
but are fairly close to the	Rest of California	Container	4.8
•	Rest of California	General cargo	4.1
averages shown here	San Diego	Auto	2.6
	San Diego	Bulk cargo	0.3
	San Diego	Container	3.8
	San Diego	General cargo	4.2
	San Diego	Reefer	4.8
	San Diego	Ro-Ro	4.8
	San Diego	Tanker	4.3
	San Francisco	Auto	2.7
	San Francisco	Bulk cargo	2.1
	San Francisco	Container	4.6
	San Francisco	General cargo	5.1
	San Francisco	Reefer	4.1
	San Francisco	Ro-Ro	4.8
	San Francisco	Tanker	1.1


Growth Factors: Ports of LA/LB

- Mercator and Oxford Economics created a growth forecast specific to Ports of LA/LB (specific to both ports, not regional)
- Capacity limit of the port included in the growth rate analysis (2035)
- Comparison with FAF growth rates show less than 3% overall difference in total activity by 2030 regardless of which rate is used

- Container vessel sizes expected to increase over time based on Mercator analysis
- Efficiency gain in terms of kWHr per TEU delivered

• The existing At-Berth Regulation requires applicable vessel visits to spend percent of vessel visits on shorepower (or alternatives) with the following phase-in schedule:

50% in 2014 70% in 2017 80% in 2020

• The OGV model utilizes data from enforcement audits and real world information on time at berth to model the impact of the existing regulation

Shorepower (or Alternatives) Example: Not Real Data

2014 Regulatory Requirements 50% of Applicable Time on Shorepower

Port: 10,000 Hrs Vessel Visits Covered by At-Berth Requirements: 6,000 Hrs

Total Vessel Visit Time at a

Vessel Visits Time on Shorepower:

3,000 Hrs

2020 Regulatory Requirements 80% of Applicable Time on Shorepower

Total Vessel Visit Time at a Port: 10,000 Hrs Vessel Visits Covered by At Berth Requirements: 6,000 Hrs Vessel Visits Time on Shorepower: 4,800 Hrs

For draft regulatory concepts, see page 37 of <u>https://www.arb.ca.gov/msei/ordiesel/draft2019ogvinv.pdf</u> Vessel Visits - Length - Effective Power - Engine Tier - Growth - Shorepower - Emission Factor

At Berth Updates Needed to Achieve Added Health Benefits

- Additional vessel categories and boilers (for certain tankers)
- Controls at more ports and marine terminals
- Use an approved compliance strategy for each visit
 - Shore power or technologies with a CARB Executive Order
- Draft implementation schedule (Aug 2018 concept)
 - Containers/Reefers/Cruise in 2021
 - Ro-Ro/Auto carriers in 2025
 - Tankers in 2025 and 2031
- Future strategies might also include onboard controls and cleaner vessels
- Opacity standards at berth and at anchor

Vessel Visits - Length - Effective Power - Engine Tier - Growth - Shorepower - Emission Factor

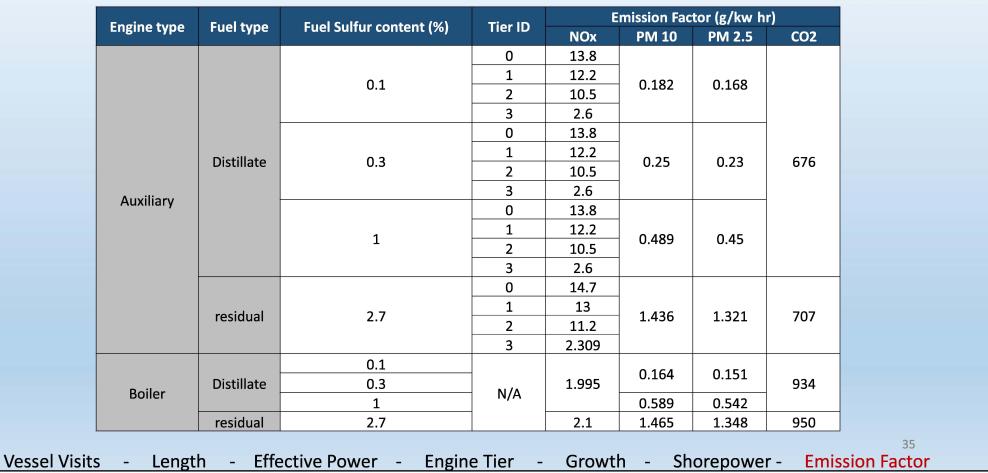
Draft Implementation Timelines (Aug 2018 Concept)

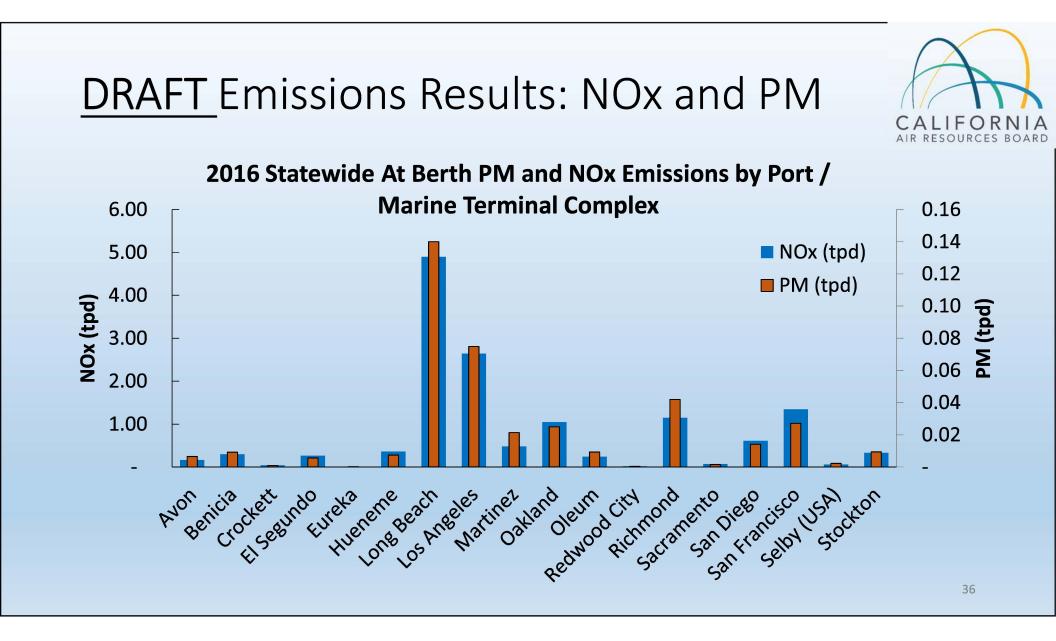
Vessel Category	Implementation Dates*					
	2021	2025	2031			
Remaining Container, Reefer, Cruise	~					
Ro-Ro/Auto carrier		~				
Tanker (plus boilers for steam powered pumps)		Intermediate level	~			
* CARB Approved Controls Required						
Vessel Visits - Length - Effective Power - Engine Tier -	Growth -	Shorepower -	Emission Fac			

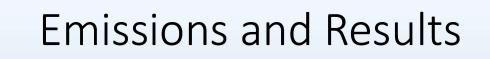
Emission Control Factor Assumptions (Aug 2018 Concept)

Control Strategy	NOx	Diesel PM, PM ₁₀ , PM _{2.5}
Shore Power	100%	100%
Intermediate Tanker Concept	50%	50%
Capture and Control	85%	85%
Vessel Visits - Length - Effective Power	- Engine Tier - Gr	rowth - Shorepower - Emission Factor

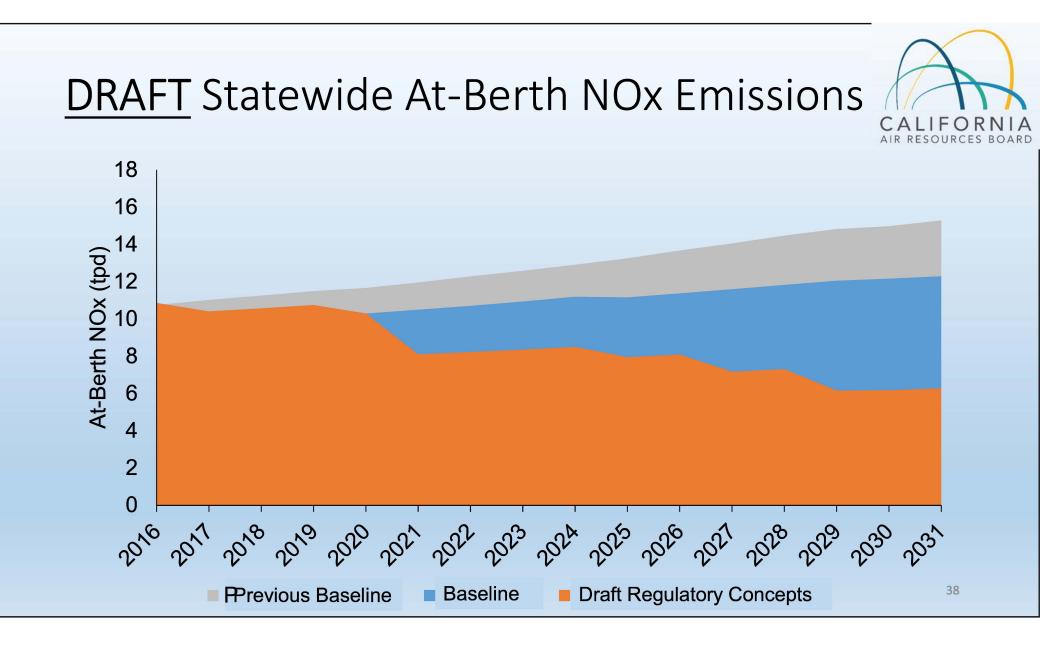
Emission Factors

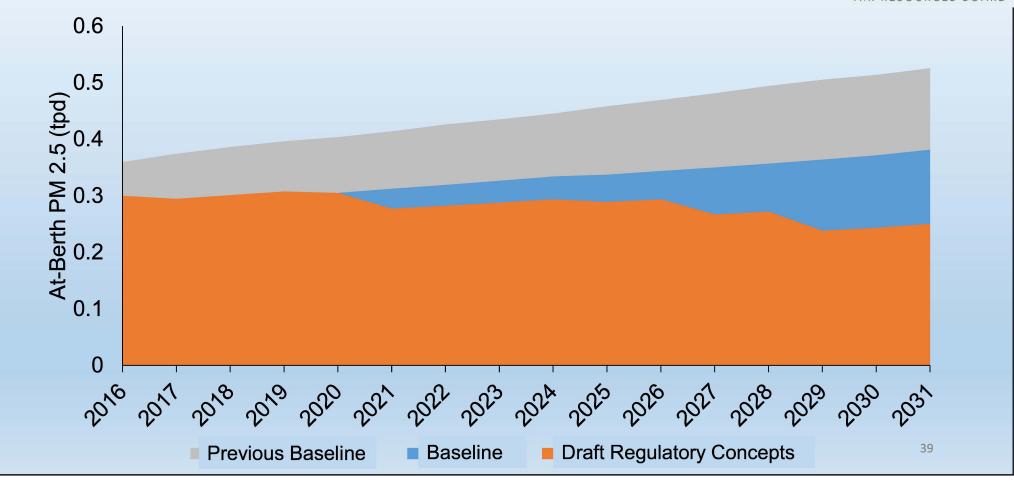

- PM and NOx emission factors updated based on U.S. EPA and IMO research and reports
 - PM emission factors reduced from previous emissions inventories based on updated test data
- Emission factors vary by pollutant, operating mode, engine type, fuel type, and fuel sulfur content

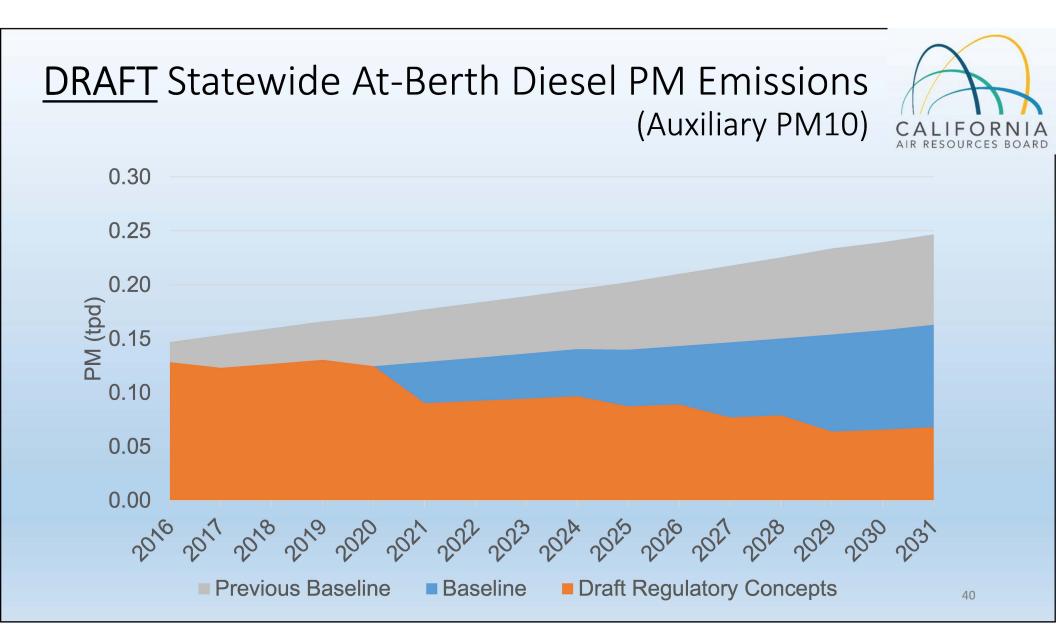

³⁴ Vessel Visits - Length - Effective Power - Engine Tier - Growth - Shorepower - Emission Factor



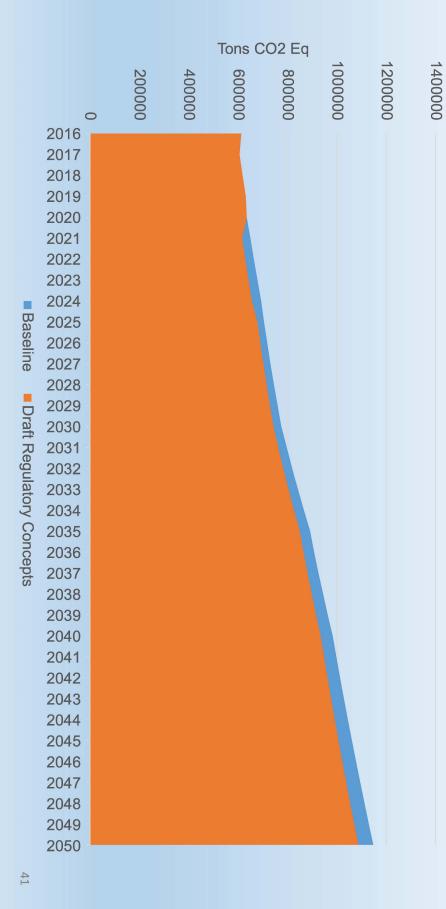
At Berth Emission Factor






Three scenarios are assessed:

- 1. Previous Baseline 2014 OGV Inventory accounting for existing At-Berth Regulation
- 2. Baseline 2019 OGV Inventory accounting for existing At-Berth Regulation
- 3. Draft regulatory concepts 2019 OGV inventory with draft regulatory concepts


DRAFT Statewide At-Berth PM2.5 Emissions (Auxiliary and Boiler PM2.5)

DRAFT Statewide At-Berth CO2 Emissions (with Grid Emissions included)

Online Information

https://www.arb.ca.gov/ports/shorepower/shorepower.htm

Available online

-Draft At Berth Inventory Methodology Documentation

-Preliminary Health Risk Assessment

New: Draft OGV At Berth Inventory Model

CONTACTS

- Questions, comments and feedback are encouraged and welcome
- To address comments and reflect any changes, please submit comments and any supporting data by March 26, 2019
- Off-Road Emissions Inventory Team is available at:

offroadinventory@arb.ca.gov

Russell Furey

Air Resource Engineer Off-Road Diesel Analysis Section <u>Russell.furey@arb.ca.gov</u> (916) 327 8399 Cory Parmer
 Manager
 Off-Road Diesel Analysis Section
 Cory.parmer@arb.ca.gov

Additional Slide(s)

44

Tier 3 Introduction

• Containerships (by size bin)

Size Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Year Start	2030	2040		2030		2040	2030	2040)	2032			2037			20	30	2037	2030	2040

• Tankers

Size Bin	Seawaymax	Panamax	Aframax	Suezmax	VLCC	ULCC
Year Start			2030			

• Other vessel types

Size Bin	Auto	Bulk	Cruise	General	Reefer	Ro-Ro	Tanker	
Year Start	2037	2040	2026		203	80		45

Model Demo

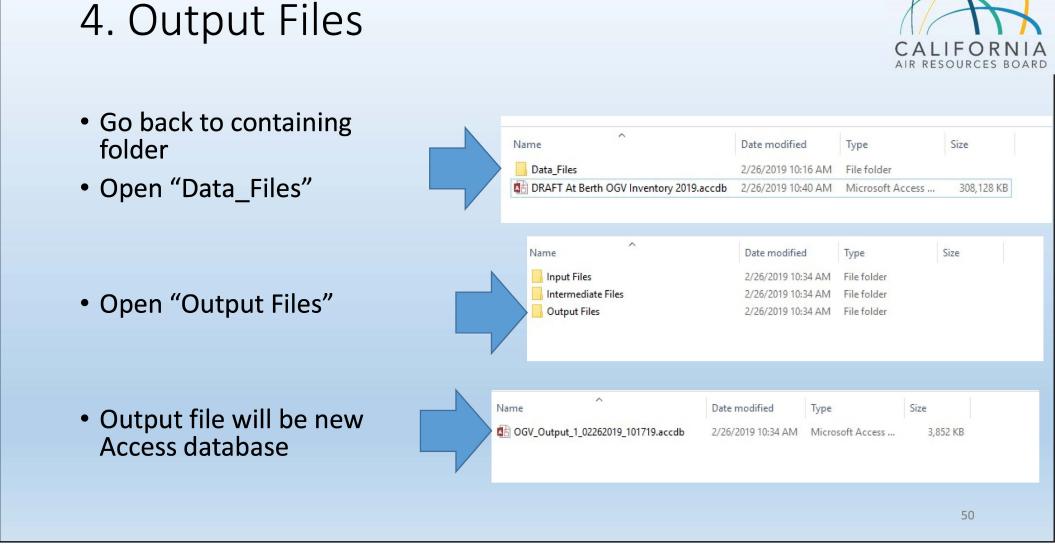
1. Open Model File

^	Name	Date modified	Туре	Size
	Data_Files	2/26/2019 10:16 AM	File folder	
	🚯 DRAFT At Berth OGV Inventory 2019.accdb	2/26/2019 10:32 AM	Microsoft Access	308,128 KB

2. Open Form

- Enable Content if needed
- Click on OGV_Input_Form

arch	h	P
Tab	les	\$
	def_Pollutants	
	Emission_Factors	
	ExcelReferenceTable	
	Fuel_Correction_Factors	
	Input_Reference	
	Input_Reference_All	
	Input_Reference_Construct	ion_t
	Population_Table	
	Record_Engine_Fuel	
	Total_Emissions	
	Unit_Conversions	
	Version_List	
For	ns	~
100	OGV_Input_Form	
Mod	dules	\$
	InputData	
Ø	IntermediateFile	
Ø	OutputFile	



3. Select Options

- Years to run (more years means longer runtime)
- Units for pollutants
- Baseline or Draft Regulatory Concepts
- Hit "Run"

At Berth Only Versi	At Berth OGV Inve	intory - rebrud	1 y 2013
RUN			
Start Year	Reporting Units		
2016	Criteria Pollutant Units:	tpd	~
End Year	GHG Pollutant Units:	фd	~
2050	Fuel Usage Units:	gal/year	×
	Engine Power Load Units:	kWh	~
	Inventory Options		1
	O Draft Regulatory O	Concept	
	100 C		
	O Add GHG electric	grid	

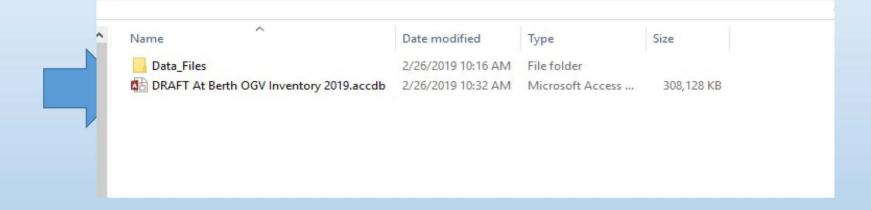
CALIFORNIA

5. Output Table

• For overall output, select "Total_Emissions"

Search	7		P
Tab	les	*	*
	Grid_emissions		
	Total_Emissions		
*	Activity_1_2016		
•	Activity_1_2017		
*	Activity_1_2018		
•	Activity_1_segment_fractions_2016		
•	Activity_1_segment_fractions_2017		
•	Activity_1_segment_fractions_2018		
•	Activity_2_2016		
*	Activity_2_2017		
•=	Activity 2 2018		

6. Output Details


 "Total Emissions" has info by vessel visit (activity averaged currently) and emissions

grid_emissi	on_tactors \									
Arrival_Port -	• Mode	 Model_Year - 	Calendar_Ye •	vessel_type -	vessel_subt +	size_bin • •	- tier_ID - · ·	runtime_hours •	·· NOx_tpd +	Fuel Used_g -
San Francisco	# At-Berth	1973	2016	3	3 4	1##	# 0 # # !	1	1.000029548284	6221212121212
San Francisco	# At-Berth	1973	2016	3	3 4	1##	# 0##!	1	: 	
San Francisco	# At-Berth	1978	2016	3	3 4	1 # #	# 0 # # !	0.5	• ####################################	нининининини
San Francisco	# At-Berth	1978	2016	3	3 4	1##	# 0 # # !	0.5	: ####################################	nunnunnunnun
	1			-		يعامد الجا	المالية المعالية المراجع			

7. Code

• Back in containing folder, open main database

• Under Database Tools, Visual Basic

• In modules, under OGV folder is primary Project - Database code (somewhat lengthy) 🖃 🍇 Database (DRAFT At Berth OGV Inventory 2019 - Microsoft Access Class Objects E Form_OGV_Input_Form 🗄 🦳 Modules SolobalFunctions CGV Class Modules 🕅 InputData 'strCategory = DLookup("Category", "def Polluntants", "Po IntermediateFile Select Case strCategory 🕅 OutputFile Case "Criteria" strCurrentUnit = strCriteriaUnit strsql = "UPDATE " & strTableName & " SET [" & st timed query strsql, "output" Case "GHG" strCurrentUnit = strGHGUnit strsql = "UPDATE " & strTableName & " SET [" & st timed query strsql, "output" Case "Fuel" strCurrentUnit = strFuelUnit 'proper dynamic query was causing the database to < strsql = "UPDATE " & strTableName & " INNER JOIN d Debug.Print strsql timed query strsql, "output" streal = "HDDATE " & strTableName & " TNNER .TOTN d

8. Primary code

×

54

>