Proposed PATHWAYS Scenario Modeling Assumptions This table summarizes input assumptions for the PATHWAYS model to explore emission reduction pathways associated with energy use. Separate and distinct models and modeling assumptions will be used to estimate carbon sequestration potential for Natural and Working Lands. A list of acronyms is included in Attachment A. | Sector | Alternative 1
Carbon Neutral by
2035 | Alternative 2
Carbon Neutral by
2035 | Alternative 3
Carbon Neutral by
2045 | Alternative 4
Carbon Neutral by
2045 | |---|---|---|---|---| | Smart Growth /
Vehicle Miles
Travelled (VMT) | VMT per capita
reduced 15% below
2019 levels by 2030
and 20% below
2019 levels by 2035 | VMT per capita
reduced 12%
below 2019 levels
by 2030 and 22%
below 2019 levels
by 2045 | VMT per capita
reduced 12%
below 2019 levels
by 2030 and 22%
below 2019 levels
by 2045 | VMT per capita
reduced 10%
below 2019 levels
by 2030 and 15%
below 2019 levels
by 2045 | | Light Duty Vehicle
(LDV) Fuel Economy
Standards | Advanced Clean Cars I GHG standards for 2017 - 2025 model years, 2% annual fuel economy improvement for 2026-2035. | | | rs, 2% annual fuel | | LDV Zero Emission
Vehicles (ZEVs) | 100% of LDV sales
are ZEV by 2025; no
Plug-in Hybrid
Electric Vehicle
(PHEV) sales after
2030
Only ZEVs on road
by 2035; no PHEVs
on road by 2035 | 100% of LDV sales
are ZEV by 2030;
no PHEV sales after
2035 | Executive Order N-79-20: 100% of LDV sales are ZEV by 2035 | AB 74 ITS Report:
100% of LDV sales
are ZEV by 2040 | | Truck Fuel Economy
Standards | California Phase II GH | California Phase II GHG Standards. | | | | Sector | Alternative 1
Carbon Neutral by
2035 | Alternative 2
Carbon Neutral by
2035 | Alternative 3
Carbon Neutral by
2045 | Alternative 4
Carbon Neutral by
2045 | |------------------------------|---|--|---|--| | Truck ZEVs | 100% of MD/HDV
sales are ZEV by
2030
Only ZEVs on road
by 2035; no PHEVs
on road by 2035 | 100% of MD/HDV
sales are ZEV by
2030;
Only ZEVs on road
by 2045; no PHEVs
on road by 2045 | 100% of MD/HDV
sales are ZEV by
2035 | AB 74 ITS Report:
100% of MD/HDV
sales are ZEV by
2040 | | Aviation | 25% of aviation fuel demand is met by electricity (batteries) or hydrogen (fuel cells) in 2030 and 50% in 2035 50% of aviation fuel demand not met in 2035 because noncombustion alternative not available | 25% of aviation fuel
demand is met by
electricity
(batteries) or
hydrogen (fuel
cells) in 2045 | 10% of aviation
fuel demand is met
by electricity
(batteries) or
hydrogen (fuel
cells) in 2045 | 0% of aviation fuel
demand is met by
electricity
(batteries) or
hydrogen (fuel
cells) in 2045 | | Ocean-going Vessels
(OGV) | 100% of OGVs
utilize shore power
by 2030
OGVs fuel demand
not met in 2035
because non-
combustion
alternative not
available | 100% of OGVs
utilize shore power
by 2030
10% of OGVs
utilize hydrogen
fuel electric
technology by 2035 | 2020 OGV At-
Berth regulation
fully implemented
with most OGVs
utilizing shore
power by 2027
25% of OGVs
utilize hydrogen
fuel cell electric
technology by
2045 | 2020 OGV At-
Berth regulation
fully implemented,
with most OGVs
utilizing shore
power by 2027
0% of OGVs are
zero-emission by
2045 | | Sector | Alternative 1
Carbon Neutral by
2035 | Alternative 2
Carbon Neutral by
2035 | Alternative 3
Carbon Neutral by
2045 | Alternative 4
Carbon Neutral by
2045 | |-------------------------------|--|--|--|--| | Port Operations | 100% of cargo
handling equipment
(CHE) is zero-
emission by 2030
100% of drayage
trucks are zero
emission by 2030 | 100% of cargo
handling
equipment (CHE) is
zero-emission by
2030
100% of drayage
trucks are zero
emission by 2030 | Executive Order N-79-20: 100% of cargo handling equipment (CHE) is zero-emission by 2035 100% of drayage trucks are zero emission by 2035 | 100% of cargo
handling
equipment (CHE) is
zero-emission by
2037
100% of drayage
trucks are zero
emission by 2035 | | Freight and
Passenger Rail | 100% of passenger and other locomotive sales are ZEV by 2030 50% of line haul locomotive sales are ZEV by 2030 and 100% by 2035 Line haul and passenger rail rely primarily on hydrogen fuel cell technology, and others utilize electricity | 100% of passenger and other locomotive sales are ZEV by 2030 50% of line haul locomotive sales are ZEV by 2030 and 100% by 2035 Line haul and passenger rail rely primarily on hydrogen fuel cell technology, and others utilize electricity | 100% of passenger and other locomotive sales are ZEV by 2030 25% of line haul locomotive sales are ZEV by 2030 and 100% by 2035 Line haul and passenger rail rely primarily on hydrogen fuel cell technology, and others utilize electricity | 100% of passenger and other locomotive sales are ZEV by 2040 100% of line haul locomotive sales are ZEV by 2045 Line haul and passenger rail rely primarily on hydrogen fuel cell technology, and others utilize electricity | | Oil & Gas Extraction | Phase out
operations by 2035 | Phase out
operations by 2035 | Phase out
operations by 2045 | Reduce operations in line with petroleum demand | | Sector | Alternative 1
Carbon Neutral by
2035 | Alternative 2
Carbon Neutral by
2035 | Alternative 3
Carbon Neutral by
2045 | Alternative 4
Carbon Neutral by
2045 | |--|--|---|--|--| | Petroleum Refining | Phase out production by 2035 | CCS on large
facilities by 2030
Production
reduced in line with
petroleum demand | CCS on large
facilities by 2030
Production
reduced in line
with demand | CCS on large
facilities by 2030
Production
reduced in line
with petroleum
demand | | Electricity
Generation | Sector GHG target of 23 MMTCO ₂ e in 2030 and 0 MMTCO ₂ e in 2035 Total load coverage Excludes combustion-based generation resources regardless of fuel; hydrogen fuel cells provide firm capacity | Sector GHG target of 30 MMTCO ₂ e in 2030 and 0 MMTCO ₂ e in 2035 Total load coverage Includes Renewables Portfolio Standard (RPS)-eligible and zero-carbon generation resources (see Attachment B) | Sector GHG target
of 30 MMTCO ₂ e in
2030 and 0
MMTCO ₂ e in 2045
Total load
coverage
Same generation
resources as
Alternative 2 | Sector GHG target
of 30 MMTCO ₂ e in
2030 and 24
MMTCO ₂ e in 2045
Retail sales load
coverage
Same generation
resources as
Alternative 2 | | Building Energy
Efficiency | Align with 2019 IEPR | Mid-High (electric) / M | lid-Mid (gas) | | | New Residential and
Commercial
Buildings | All electric
appliances
beginning 2026 | All electric
appliances
beginning 2026 | All electric
appliances
beginning 2026 | All electric
appliances
beginning 2029 | | Sector | Alternative 1
Carbon Neutral by
2035 | Alternative 2
Carbon Neutral by
2035 | Alternative 3
Carbon Neutral by
2045 | Alternative 4
Carbon Neutral by
2045 | |-----------------------------------|--|--|---|--| | Existing Residential
Buildings | 80% of appliance
sales are electric by
2025 and 100% are
electric by 2030
All buildings
retrofitted to
electric appliances
by 2035 | 80% of appliance
sales are electric by
2030 and 100% are
electric by 2035
Appliances are
replaced at end of
life | 80% of appliance
sales are electric
by 2030 and 100%
are electric by
2035
Appliances are
replaced at end of
life | 75% of appliance
sales are electric by
2030 and 100% are
electric by 2035
Appliances are
replaced at end of
life | | Existing Commercial
Buildings | 80% of appliances
sales are electric by
2025 and 100% are
electric by 2030
All buildings
retrofitted to
electric appliances
by 2035 | 80% of appliance
sales are electric by
2030 and 100% are
electric by 2045
Appliances are
replaced at end of
life | 80% of appliance
sales are electric
by 2030 and 100%
are electric by
2045
Appliances are
replaced at end of
life | 75% of appliance
sales are electric by
2030 and 100% are
electric by 2045
Appliances are
replaced at end of
life | | Industrial Energy
Efficiency | Energy demand reduced 6% relative to 2019 IEPR Mid-Mid | | | | | Food Products | 50% energy
demand electrified
by 2030; 100% by
2035 | 50% energy
demand electrified
by 2030; 100% by
2035 | 0% energy
demand electrified
by 2030; 100% by
2045 | 0% energy demand
electrified by 2030;
10% by 2045 | | Construction | 50% energy
demand electrified
by 2030 and 100%
by 2035 | 50% energy
demand electrified
by 2030 and 100%
by 2035 | 25% energy
demand electrified
by 2030 and 100%
by 2035 | 0% energy demand
electrified by 2030
and 10% by 2045 | | Sector | Alternative 1
Carbon Neutral by
2035 | Alternative 2
Carbon Neutral by
2035 | Alternative 3
Carbon Neutral by
2045 | Alternative 4
Carbon Neutral by
2045 | |---|--|--|---|--| | Chemicals and Allied
Products; Pulp and
Paper | Electrify 50% of
boilers by 2030
Electrify 100% of
boilers and process
heat by 2035
Electrify 100% of
other energy
demand by 2030 | Electrify 50% of
boilers by 2030 and
100% of boilers by
2035
Hydrogen for 25%
of process heat by
2035 trending to
100% by 2045
Electrify 100% of
other energy
demand by 2035 | Electrify 0% of
boilers by 2030
and 100% of
boilers by 2045
Hydrogen for 25%
of process heat by
2035 trending to
100% by 2045
Electrify 100% of
other energy
demand by 2045 | Electrify 0% of
boilers by 2030
and 10% of boilers
by 2045
Hydrogen for 0%
of process heat by
2035 trending to
10% by 2045
Electrify 0% of
other energy
demand by 2045 | | Stone, Clay, Glass &
Cement | Facilities close
because non-
combustion
alternative not
available | Carbon Capture
and Sequestration
(CCS) on large
facilities by 2030
and on all facilities
by 2045 | CCS on large
facilities by 2030
and on all facilities
by 2045 | CCS on large
facilities by 2030
and on all facilities
by 2045 | | Other Industrial
Manufacturing | 50% energy
demand electrified
by 2030 and 100%
by 2035 | 50% energy
demand electrified
by 2035 | 0% energy
demand electrified
by 2030 and 50%
by 2045 | 0% energy demand
electrified by 2030
and 10% by 2045 | | Combined Heat and
Power | 50% waste heat
demand electrified
by 2030 and 100%
by 2035 | Facilities retire by 2040 | Facilities retire by 2040 | Facilities retire by 2040 | | Agriculture Energy
Use | 50% energy
demand electrified
by 2030 and 100%
by 2035 | 50% energy
demand electrified
by 2035 | 0% energy
demand electrified
by 2030 and 50%
by 2045 | 0% energy demand
electrified by 2030
and 10% by 2045 | | Sector | Alternative 1
Carbon Neutral by
2035 | Alternative 2
Carbon Neutral by
2035 | Alternative 3
Carbon Neutral by
2045 | Alternative 4
Carbon Neutral by
2045 | |---|--|--|--|--| | Low Carbon Fuels
for Transportation | No biofuels
consumption by
2035 | Biomass supply
used to produce
conventional and
advanced biofuels
as well as hydrogen | Biomass supply
used to produce
conventional and
advanced biofuels
as well as
hydrogen | Biomass supply
used to produce
conventional and
advanced biofuels
as well as
hydrogen | | Low Carbon Fuels
for Buildings and
Industry | RNG used to
produce hydrogen
for electricity
production using
fuel cells | In 2030s RNG blended in pipeline Hydrogen blended in natural gas pipeline at 7% energy, ramping up between 2030 and 2040 In 2030s, dedicated hydrogen pipelines constructed to serve certain industrial clusters | In 2030s RNG blended in pipeline Hydrogen blended in natural gas pipeline at 7% energy, ramping up between 2030 and 2040 In 2030s, dedicated hydrogen pipelines constructed to serve certain industrial clusters | In 2030s RNG blended in pipeline Hydrogen blended in natural gas pipeline at 7% energy, ramping up between 2030 and 2040 In 2040s, dedicated hydrogen pipelines constructed to serve certain industrial clusters | | Sector | Alternative 1
Carbon Neutral by
2035 | Alternative 2
Carbon Neutral by
2035 | Alternative 3
Carbon Neutral by
2045 | Alternative 4
Carbon Neutral by
2045 | |---|--|---|---|--| | Non-combustion
Methane Emissions | No additional landfill or dairy digester methane capture Maximize deployment of alternative manure management strategies Enteric strategy deployed before 2030 Divert 75% of organic waste from landfills by 2025 Oil and gas methane emissions are nearly eliminated when combustion phased out | Rapidly increase landfill and dairy digester methane capture Some alternative manure management deployed for smaller dairies Enteric strategy deployed before 2030 Divert 75% of organic waste from landfills by 2025 Oil and gas fugitive methane emissions reduced 50% by 2030 and further reductions as infrastructure components retire in line with reduced natural gas demand | Increase landfill and dairy digester methane capture Some alternative manure management deployed for smaller dairies Enteric strategy deployed in 2030 Divert 55% of organic waste from landfills by 2025 and 75% by 2030 Oil and gas fugitive methane emissions reduced 50% by 2030 and further reductions as infrastructure components retire in line with reduced natural gas demand | Increase landfill and dairy digester methane capture Limited alternative manure management deployed Enteric strategy deployed in 2030 Divert 55% of organic waste from landfills by 2025 and 75% by 2030 Oil and gas fugitive methane emissions reduced 45% by 2030 and further reductions as infrastructure components retire in line with reduced natural gas demand | | High Global
Warming Potential
Emissions | Rapid building
electrification
results in increased
hydroflourocarbon
(HFC) emissions | Low GWP refrigerants introduced as building electrification increases mitigating HFC emissions | Low GWP refrigerants introduced as building electrification increases mitigating HFC emissions | Low GWP refrigerants introduced as building electrification increases mitigating HFC emissions | | Sector | Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4 | |--|-------------------|--|---|---| | | Carbon Neutral by | Carbon Neutral by | Carbon Neutral by | Carbon Neutral by | | | 2035 | 2035 | 2045 | 2045 | | Carbon Dioxide
Removal (CDR) from
the atmosphere | No CDR | CDR deployed by
2030 to achieve
GHG emissions
55% below 1990
levels by 2030
target
CDR scaled to
compensate for
remaining GHG
emissions in 2035 | CDR demonstration projects deployed by 2030 CDR scaled to compensate for remaining GHG emissions in 2045 | CDR demonstration projects deployed by 2030 CDR scaled to compensate for remaining GHG emissions in 2045 | ## ATTACHMENT A: List of Acronyms AB Assembly Bill CCS Carbon Capture and Sequestration CDR Carbon Dioxide Removal CHE Cargo Handling Equipment GHG Greenhouse Gas HDV Heavy-Duty Vehicle HFC Hydrofluorocarbon IEPR Integrated Energy Policy Report ITS U.C. Davis Institute of Transportation Studies LDV Light-Duty Vehicle MD Medium Duty MMTCO₂e Million metric tonnes of carbon dioxide equivalent PHEV Plug-in Hybrid Electric Vehicle OGV Ocean-Going Vessel RNG Renewable Natural Gas RPS Renewables Portfolio Standard VMT Vehicle Miles Traveled ZEV Zero-Emission Vehicle ## ATTACHMENT B: Generation Technologies to be included in Modeling | Technology | Eligibility Basis | |---------------------------------|-------------------| | Solar PV | RPS | | Solar thermal (existing only) | RPS | | Onshore wind | RPS | | Offshore wind | RPS | | Geothermal | RPS | | Bioenergy | RPS | | Fuel cells (green hydrogen) | RPS | | Small hydro (existing only) | RPS | | Large hydro (existing only) | Zero-carbon | | Nuclear (existing only) | Zero-carbon | | Drop-in renewable fuels (green | Zero-carbon | | hydrogen, biomethane) | | | Natural gas generation with CCS | Zero-carbon |