Air Toxics Hot Spots Program

Cancer Inhalation Unit Risk (IUR)

1-Bromopropane

$$H_2$$
 C
 CH_3
 H_2

Office of Environmental Health Hazard Assessment Scientific Review Panel Meeting October 15, 2021

1-Bromopropane Chemical-Physical Properties

- Also referred to as n-propyl bromide
- Colorless liquid at room temperature
- Soluble in organic solvents Slightly soluble in water: 2,450 mg/L @ 20°C
- Boiling point: 71°C at 760 mm Hg (torr)
- Vapor pressure: 110.8 mm Hg (torr) @ 20°C

1-Bromopropane Listings and Uses

- Listed as a carcinogen under California Prop. 65
- Listed by International Agency for Research on Cancer (IARC) as a Group 2B carcinogen, i.e., possibly carcinogenic to humans

Uses

- Solvent vehicle for adhesives in laminates and foam products
- Degreasing/cleaning agent for metals, plastics, optics, and electronics
- Promoted as an alternative to ozone-depleting CFCs
- Alternate solvent in modified perchloroethylene dry-cleaning machines

1-Bromopropane California Emissions

Limited data on 1-bromopropane (1-BP) emissions:

- Currently not reportable under the Hot **Spots Program**
- Statewide CA survey in 2011 reported a total of 160.7 tons of 1-BP emissions due to solvent cleaning operations

1-Bromopropane **Toxicokinetics**

- Metabolism of inhaled 1-BP in rodents primarily through oxidative metabolism via P450 enzymes, conjugation with glutathione and debromination.
- The majority of absorbed 1-BP (40-71%) may be excreted unchanged or as CO₂ (10-31%) in exhaled air within 4 hours.
- Radiolabeled [1-14C]-1-BP recovered in urine ranged from 17 to 23%.
 - Main urinary metabolite excreted in the urine is N-acetyl-Spropylcysteine (37% of total urinary metabolites)
 - Metabolite found in urine of 1-BP workers and in national biomonitoring studies of pregnant women and children
 - Other metabolites in rodents include the mutagens α-bromohydrin and glycidol

1-Bromopropane Toxicokinetics in Children and Adults

- NIOSH observed a strong association between TWA inhalation exposure to 1-BP in workers and the urinary metabolite N-acetyl-S-propylcysteine
 - Considered N-acetyl-S-propylcysteine an effective biomarker for 1-BP workers
- National Children's Vangard Study (2009-2010) found Nacetyl-S-propylcysteine in 99% of urine samples from ~ 500
 3rd trimester pregnant women
- NHANES study (2011-2012) mean urinary levels of N-acetyl-S-propylcysteine was 2.6 ng/ml (boys) and 3.3 ng/ml (girls) in children's survey
- Surveys suggest wide-spread non-occupational exposure to 1-BP, although exposure to other chemicals could result in same urinary metabolite

1-Bromopropane Carcinogenicity Studies in Rodents

NTP performed 1-BP whole-body inhalation cancer bioassays in rats and mice in 2011

- F-344/N rats and B6C3F₁ mice (50 group/sex/species)
- Rats: 0, 125, 250 or 500 ppm for 6.2 hrs/day, 5 days/week for 105 weeks
- Mice: 0, 62.5, 125 or 250 ppm for 6.2 hrs/day, 5 days/week for 105 weeks

1-Bromopropane Tumor Incidence - Rats

Increased tumor incidences in male and female rats:

Sex, species	Tumor type	Exposure conc. (ppm)	Tumor incidence	
Male rats	Skin: Keratoacanthoma, Basal Cell Adenoma, Basal Cell Carcinoma, or Squamous Cell Carcinoma	0 125 250 500	1/50 [‡] 7/50* 9/50** 10/50**	
Female rats	Large intestine: Adenoma	0 125 250 500	0/50 [‡] 1/50 2/50 5/50*	

^{*} p < 0.05, ** p < 0.01 difference from controls, poly-3 test p < 0.01 positive trend for tumor type

1-Bromopropane Tumor Incidence - Mice

Increased tumor incidences in female mice only:

Sex, species	Tumor type	Exposure conc. (ppm)	Tumor incidence
Female mice	Lung: Alveolar/bronchiolar adenoma or carcinoma (combined)	0 62.5 125 250	1/50 [‡] 9/50** 8/50* 14/50**
Male mice	None		

^{**} p < 0.01 difference from controls, poly-3 test

p < 0.01 positive trend for tumor type

1-Bromopropane Other Supporting Data

- **Metabolism of 1-BP produces effects that other** carcinogens are known for, such as oxidative stress via glutathione depletion and immunomodulation
- Structurally-related brominated hydrocarbon compounds (1,2-dibromoethane, tribromomethane, 1,2-dibromo-3chloropropane, bromodichloromethane), cause tumors in the same organs and tissues as 1-BP
- 1-BP metabolites formed by CYP-mediated oxidation (bromohydrin and glycidol) are direct-acting mutagens

1-Bromopropane Genotoxicity

Relatively small genotoxicity database

- DNA damage assay (3 studies, +/-)
- DNA adduct formation (2, in vitro & in vivo, +)
- Induction of DNA repair (1 study, -)
- **Bacterial mutation assays (3 studies, +/-)**
- Mammalian cell gene mutation test (1 study, +)
- Chromosomal damage (2 in vivo, -)
- Transgenic rodent mutation assay (1 study, -)

1-Bromopropane Cancer Hazard Evaluation

- No epidemiology findings for carcinogenicity, although exposure data of sufficient size and duration may not yet exist
- One rodent lifetime inhalation study: 1) carcinogenic in multiple species, and 2) induced tumors at one or more sites in rats
- Some positive genotoxicity studies: 1) DNA adduct formation both in vitro and in vivo, 2) mutagenic in a closed system bacterial Ames assay, and 3) induced mutations in vitro in mouse lymphoma cells
- Structurally-related brominated compounds produce similar tumors in lifetime rodent studies

Combined, these factors point to a potential for 1-BP to induce tumors in humans.

First step in IUR derivation is converting the NTP tumor incidence into "effective tumor incidence"

- Effective Tumor Incidence The number of tumor-bearing animals over the number of animals alive at time of first occurrence of the tumor.
- Removes animals from the assessment that died before they were considered to be at risk for tumor development.

Comparison of NTP tumor incidence with effective tumor incidence for rodents exposed to 1-bromopropane

Sex, species	Tumor type	Exposure Level (ppm)	NTP Incidence	Effective Tumor Incidence
Male rats	Skin tumors (combined)	0 125 250 500	1/50† 7/50* 9/50** 10/50**	1/49† 7/49* 9/49** 10/44**
Female rats	Large intestine adenomas	0	0/50†	0/45†
		125	1/50	1/43
		250	2/50	2/41
		500	5/50*	5/36*
Female mice	Lung tumors (combined)	0	1/50†	1/41†
		62.5	9/50**	9/46*
		125	8/50*	8/42*
		250	14/50**	14/47**

Fisher exact test pairwise comparison: p < 0.05, p < 0.01Cochran-Armitage trend test for dose response: $^{\dagger}p < 0.01$

- In male rats, survival was significantly reduced at 500 ppm (p = 0.033, life table pairwise comparison)
- Decreased survival >15% compared to controls by week 85
- Most of these early deaths due to treatmentrelated chronic inflammation

 To determine cancer potency, need to convert 1-BP air concentration to average daily dose, in mg/kg BW-day:

Dose (mg/kg BW-day) = IR × C / BW Where:

C = time-adjusted concentration to annual average (6.2 hrs / 24 hrs x 5 days / 7 days)

BW = body weight – average over 2-year exposures IR = inhalation rate – equation based on BW of animal

IR calculation:

- rats: IR $(m^3/day) = 0.702 \times (BW)^{2/3}$ (OEHHA, 2018)
- mice: IR $(m^3/day) = 0.0345 \times (BW / 0.025 kg)^{2/3}$ (Anderson, 1983)

Dose (mg/kg BW-day) = IR × C / BW

Species	1-BP Chamber Concentration (mg/m³)					
sex	0	314	629	1258	2515	
	Daily Exposed Dose (mg/kg-day)					
<u>Rats</u>						
Male	0	-	106.4	212.8	425.6	
Female	0	-	123.2	246.4	492.8	
<u>Mice</u>						
Female	0	64.3	128.6	257.2	-	

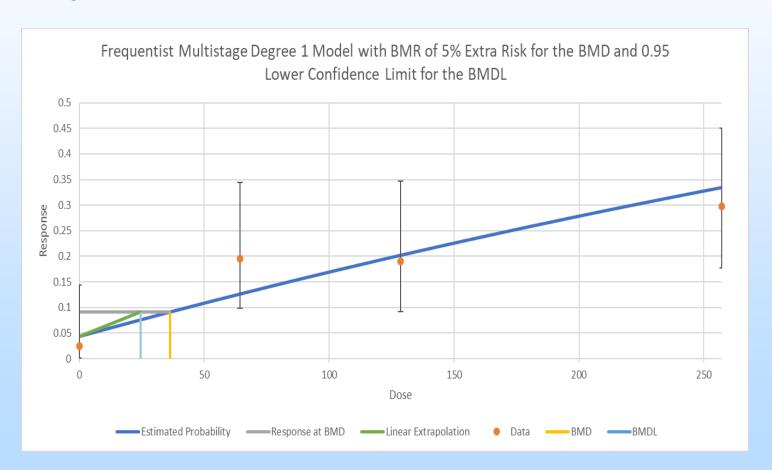
We now have the fraction affected (effective tumor incidences) and the dose (in mg/kg BW-day)

- Multistage Cancer Model in the Benchmark Dose Software (U.S. EPA, 2017) used to determine the cancer potency for female rat and female mouse tumor data
- Multistage Weibull model used for male rat tumor data due to decreased survival in 500 ppm group
- Potency values derived using a Benchmark Response (BMR) of 5% (5% extra risk) to calculate the Benchmark Dose (BMD)
- The 95% lower confidence bound on the effective dose producing 5% response (BMDL₀₅) is used to calculate cancer potency
- 0.05 / BMDL₀₅ = Cancer Slope Factor (CSF)

- Cancer slope factors were calculated for tumors with a statistically significant tumor incidence on pair-wise comparison to controls and a positive trend for dose-response:
 - Skin tumors of epithelial origin (combined) in male rats
 - Large intestine adenomas in female rats
 - Lung alveolar/bronchiolar adenoma or carcinoma (combined) in female mice

 Final calculation is to convert the animal CSF values (CSF(a)) to CSF human equivalents (CSF(h)) using body weight (BW^{3/4}) scaling:

$$CSF(h) = CSF(a) \times (BW(h) / BW(a))^{1/4}$$


 This interspecies scaling factor accounts for pharmacokinetic differences (e.g., breathing rate, metabolism), and for pharmacodynamic considerations (i.e., tissue responses to chemical exposure).

Tumor type	AIC	<i>p</i> -value	BMD ₀₅ (mg/kg- day) ^a	BMDL ₀₅ (mg/kg- day)	CSF Rodent (mg/kg-day) ⁻¹	CSF - Human (mg/kg- day) ⁻¹
Male Rats Skin tumors combined	151.75	NA	57.57	33.43	0.001496	0.0053
Female Rats Large intestine Female Mice	56.84	0.95	202.43	119.07	0.000420	0.0017
Lung Tumors combined	159.53	0.26	36.34	24.54	0.00204	0.013

Lung tumors in female mice provided the highest CSF(h) value, establishing this tumor as the most sensitive endpoint for 1-BP-induced carcinogenicity

BMDS Multistage Cancer Model plot fit for alveolar/bronchiolar lung tumors in female mice exposed to 1-bromopropane

1-Bromopropane Inhalation Unit Risk (IUR) Derivation

- 1-BP unit risk factor = IUR = $\left(\frac{CSF \times BR}{BW \times CF}\right)$
 - CSF (human) is 0.013 (mg/kg-day)⁻¹
 - Human breathing rate (BR) of 20 m³/day
 - Average human body weight (BW) of 70 kg
 - mg to µg conversion factor (CF) of 1000
- 1-BP IUR = $3.7 \times 10^{-6} \, (\mu g/m^3)^{-1}$
 - Lifetime exposure to 1 µg/m³ 1-BP results in an extra cancer risk of 3.7 chances in a million.

1-Bromopropane Changes from Public Comment Draft

No public comments were submitted Additions following public comment period:

- US EPA (2020) TSCA Reference comments on N-acetyl-S-propylcysteine as a biomarker (p. 15, lines 410 415) and advantages/limitations of several 1-BP genotoxicity studies (p. 19, lines 547 559)
- Comment regarding N⁷-guanine adducts (p. 17, lines 484 – 489)
- BioReliance (2015) bacterial mutation study (p. 18, lines 526 - 537), and removed Elf Atochem (1994) bacterial mutation study

1-Bromopropane Inhalation Unit Risk

*Questions?