

2021 Truck and Engine Manufacturers Association Compliance Workshop: Off-Road Breakout Session

April 28, 2021

Outline

- Off-Road In Use Compliance Update
- Off-Road Tier 5 Update
- EMA Q+A

Off-Road In-Use Compliance Program

Nonroad/Marine/Locomotive/Stationary Breakout Session - 04/28/2021

Off-Road HDIUC Status

- Similar to HD on-road program, the Heavy-Duty In-Use Compliance (HDIUC) section is developing an in-use compliance program for off-road equipment
- Objective is to ensure manufactured vehicle/equipment is in all material respects as certified (AECD, inducements, etc.) and maintains emission compliance throughout useful life
- Title 13 CCR 2139, 40 CFR 1039, etc. provide the authority for CARB to conduct in-use testing of HD off-road engines and require corrective action in case of nonconformity

California Code of Regulation Title 13

CHAPTER 9. OFF-ROAD VEHICLES AND ENGINES POLLUTION CONTROL DEVICES

- ARTICLE 1. SMALL OFF-ROAD ENGINES
 (Current Regulation: Sections 2400 2409)
- ARTICLE 3. OFF-HIGHWAY RECREATIONAL VEHICLES AND ENGINES (Current Regulation: Sections 2410 2415)
- ARTICLE 4. OFF-ROAD COMPRESSION-IGINTION ENGINES AND EQUIPMENT

(Current Regulation: Sections 2420 – 2427)

- ARTICLE 4.5. OFF-ROAD LARGE SPARK-IGINITION ENGINES (Current Regulation: Sections 2430 – 2439)
- ARTICLE 4.7 SPARK-IGNITION MARINE ENGINES (Current Regulation: Sections 2440 2448)

Recap of 2020 HDIUC Activities

- A pilot program was initiated to assist with the development of the official IUC program
- Pilot program elements
 - Data logging
 - PEMS testing
- Manufacturers' support was needed for on data logging due to off-road engines' non-standardized communication

Pilot Program

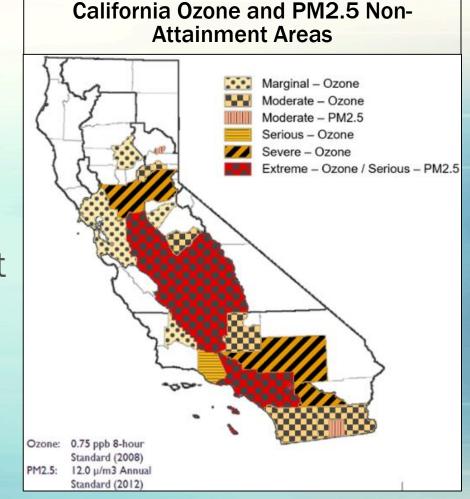
- Performed data logging completed using generic and proprietary tools
 - 11 engines
 - 4 different engine manufacturers
- Next steps:
 - PEMS testing
 - Inducement testing
 - Develop an OFCI IUC standard operating procedure (SOP)
- Objectives:
 - Begin the first official off-road ICU program
 - Inform the proposed <u>Tier 5 off-road regulation</u>

CARB's Request to Manufacturers

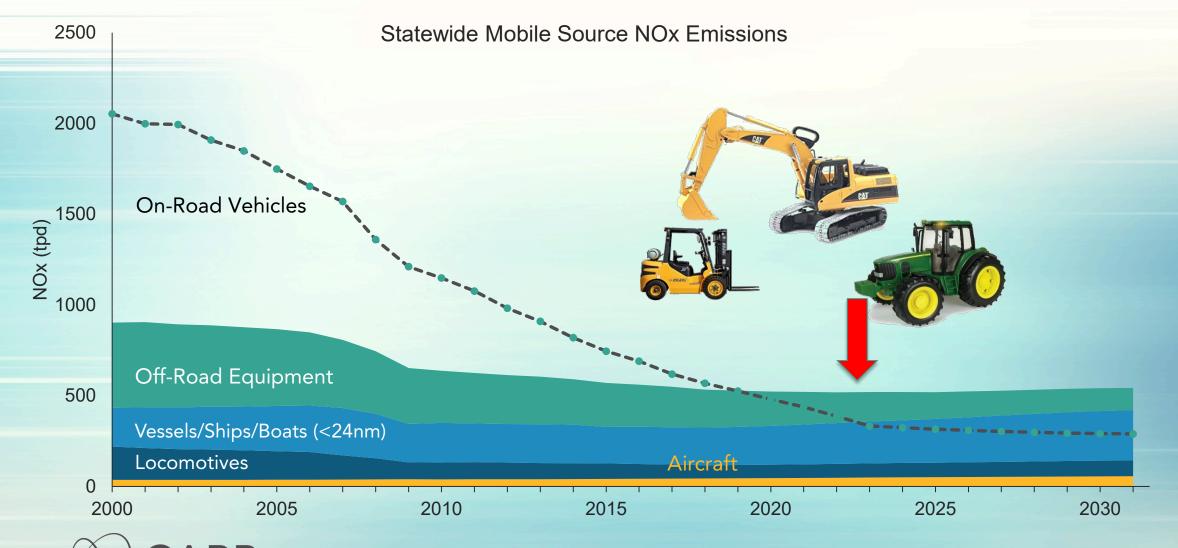
- Support for data logging equipment
 - Provide support to read, record, and interpret all the information broadcast by an engine's onboard computers and electronic control units (1039.205 (t) & 13 CCR § 2421 (a)(4)(B))
 - Collect any parameters similar to the targeted list*, even if they are not supported by SAE J1939
 - The CAN bus communications: through both private or/and public networks
 - Data logging method: non-invasive method
- On-going <u>engineering support</u> on torque curves, warranty history, and responding to other questions
- Provide diagnostic tool(s): to ensure equipment is operating as intended

Conclusion

- CARB's Off-road IUC program will be developed for CI
 - In the near future: IUC programs for SI, and SI marine engines
- CARB made progress and will continue with the development of the Off-Road IUC program
- CARB requests manufacturer support with <u>data logging</u>, engineering support, and diagnostic tools
- Off-road OEM support is <u>essential and required</u>
- This program will support the development of the <u>Tier 5 off-road</u> regulation



Possible Elements of the Proposed Amendments to the Off-Road Diesel Engine Emission Standards (Tier 5 criteria pollutant and CO₂ standards)


Major NOx and PM_{2.5} Emission Reductions Needed

- California has the worst air quality in the nation
- Key challenges
 - San Joaquin Valley PM2.5
 - South Coast ozone
- Off-road equipment are one of the largest contributors
- Action beyond current programs needed to meet air quality goals in various regions

Growing Importance of Off-Road

Ref: CEPAM 2019 Summer

Summary: Off-Road Tier 4 Standards

Tier 4 Final Exhaust Emission Standards after 2014 Model Year (g/kW-hr)								
Power Category	Application	PM	NOx	NMHC	NOx+NMHC	CO		
< 19 kW (< 25 HP)	AII	0.40			7.5	6.6		
19 ≤ kW < 56 (25 ≤ HP < 75)	All	0.03			4.7	5.0		
$56 \le kW < 130$ (75 \le HP < 175)	All	0.02	0.40	0.19		5.0		
$130 \le kW \le 560$ (175 \le HP \le 750)	All	0.02	0.40	0.19		3.5		
> 560 kW (> 750 HP)	Gen Sets	0.03	0.67	0.19		3.5		
	Mobile Machines	0.04	3.5	0.19		3.5		

Summary: Off-Road Tier 4 Useful Life

Current Useful Life Periods									
	Engine Type	Maximum Power	Rated Engine Speed	Useful Life					
Variabl	e or Constant Speed	< 19 kW (< 25 HP)	Any	3,000 hrs or 5 yrs					
C	constant Speed	$19 \le kW < 37$ (25 \le HP < 50)	≥ 3,000 rpm	3,000 hrs or 5 yrs					
C	onstant Speed	$19 \le kW < 37$ (25 \le HP $<$ 50)	< 3,000 rpm	5,000 hrs or 7 yrs					
\	/ariable Speed	$19 \le kW < 37$ (25 \le HP $<$ 50)	Any	5,000 hrs or 7 yrs					
Variabl	e or Constant Speed	> 37 kW (> 50 HP)	Any	8,000 hrs or 10 yrs					

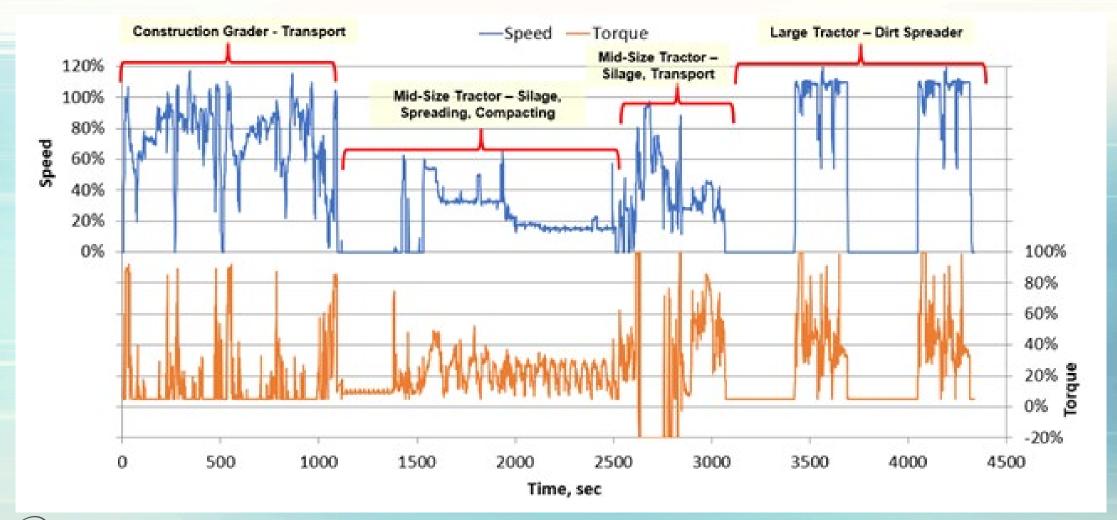
Proposed Elements of the Off-Road Diesel Regulatory Amendments

- Upcoming Tier 5:
 - Staff will be amending the off-road diesel regulation
 - Considering proposing significantly more stringent NOx standards that are up to 90% lower than current Tier 4 standards
 - Considering proposing PM standards up to 75% more stringent than current Tier 4 standards to drive deployment of DPFs and get maximum feasible toxic diesel PM reductions
 - Considering proposing CO₂ standards to reduce engine GHG emissions from 5 to 10 % below current levels
 - Regulations were last updated in 2004

Possible Elements of Tier 5 Continued

- Low-load and low-temperature NOx emissions
- Work-based in-use compliance procedures
- First-time off-road diesel OBD requirements
- Test procedure modifications to include measurement protocols for off-road diesel CO₂ emissions
- Proposing to go to the Board in 2024 with implementation beginning in 2028

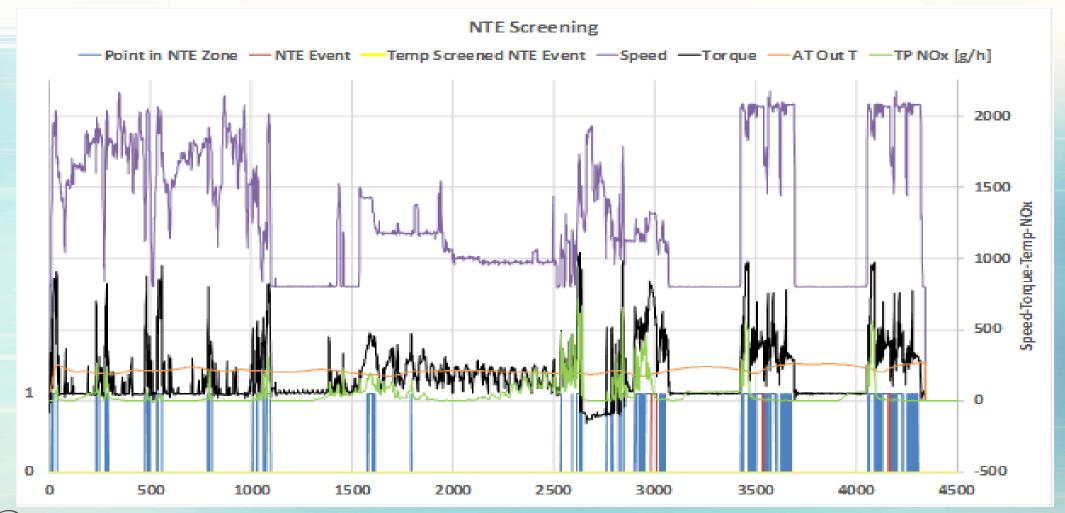
Southwest Research Institute (SwRI) Off-Road Demonstration Program: 19RD025


- Optimize a Deere 6068 engine for low–NOx performance
- Reduce NOx emissions by 90% to 0.04 g/kW-hr
- Reduce PM Emissions by 75% to 0.005 g/kW-hr
- Supplemental demonstration tasks include:
 - Reducing CO₂ emissions by 5-10% below current levels in support of a first ever CO₂ exhaust standard for off-road diesel engines
 - Full useful-life aging (DAAAC) for emissions aftertreatment components
 - Demonstrating an off-road idle reduction system
 - Demonstrating emissions performance over 12,000-hour useful life

Question on the Off-Road LLAC

- Q: The Nonroad Low Load Application Cycle (LLAC) is a composite cycle made up of low load operations from four different machine applications – what four types of nonroad CI equipment were in the test?
- A: LLAC was constructed by SwRI from real-world data provided by John Deere to demonstrate NOx performance during extended low load operation. The equipment types that produced the data for the LLAC were a Construction Grader, two Mid-sized Tractors, and a Large Tractor. LLAC is not intended as a certification cycle, but as a tool for SwRI to demonstrate NOx control during low load operating conditions.

LLAC Composition Cycles



Question on NTE and the Off-Road LLAC

- Q: Does normal NTE usually capture these [LLAC] low load points?
- A:
 - No. Out of the 4,339 seconds of the LLAC, 630 seconds (14.5%) are within the NTE zone, however the vast majority do not last longer than 30 seconds at a time and are not valid NTE events.
 - There are 3 potential NTE events that occur during the LLAC (one in a mid-size tractor and two in the large tractor). Durations are 57 secs, 39 secs, and 39 secs, respectively.
 - All of these potential short events are disqualified by the aftertreatment (AT) outlet temperature being less than 250°C.

NTE Events on the Off-Road LLAC Cycle

Why is the LLAC Necessary

- Q: What is the "driver" for potentially utilizing LLAC regarding nonroad Clengines?
- A:
 - SCR requires exhaust temperature to remain above a threshold ($\approx 250\,^\circ$ C) to function properly and reduce NOx.
 - Extended low load operation can reduce exhaust temperature to the point that NOx emissions aren't adequately controlled.
 - LLAC provides SwRI a platform for designing off-road aftertreatment configurations that continue to control NOx during extended low load operation.
 - CARB staff does not intend to propose the LLAC as certification test cycle.

EMA Q+A

Q: Does CARB regulate underground mining equipment? If so, do they need a
waiver from the U.S. Mine Safety and Health Administration (MSHA)? If not,
does underground mining equipment fall into the scope of the off-road fleet
rule?

A: There is no exemption for underground mining equipment. If this
equipment uses off-road engines, it must be CARB certified prior to being
introduced into commerce in CA. MSHA may have additional requirements.

Contact Information

- Contacts:
 - Jenna Latt, Manager Off-Road Control Section
 - jenna.latt@arb.ca.gov
 - Jeff Lowry, Staff Air Pollution Control Specialist
 - jeff.lowry@arb.ca.gov

Contact Information

New Vehicle and Engine Programs Branch

Jackie Lourenco, Branch Chief

(626) 450-6152

Jackie.Lourenco@arb.ca.gov

In-Use Programs Branch
Sharon Lemieux, Branch Chief
(626) 277-9218
Sharon.Lemieux@arb.ca.gov

Compression-Ignition and
Heavy-Duty Certification Section
Babak Pazokifard, Manager
(626) 450-6128
babak.pazokifard@arb.ca.gov

Off-Road Spark-Ignited
Engine Certification Section
Kumar Muthukumar, Manager
(626) 575-7040
kumar.muthukumar@arb.ca.gov

Heavy Duty In-Use Compliance Section Elena Florea, Manager (916) 718-5942 Elena.Forea@arb.ca.gov

Questions

